
E s s e n t i a l f o r s o f t w a r e t e s t e r s
TE TERSUBSCRIBE

It’s FREE
for testers

October 2012 v2.0 number 17£ 4 ¤ 5/

t e s t

d e v

so p
Including articles by:

Stephen Janaway

Ole Lensmar
SmartBear Software

Wolfgang Platz
Tricentis

Jeanne Hofmans and
Erwin Pasmans
Improve Quality Services

Martin Mudge
Bugfinders.com

Test Studio
Easily record automated tests for
your modern HTML5 apps

Test the reliability of your rich, interactive JavaScript apps with just a few clicks.
Benefit from built-in translators for the new HTML5 controls, cross-browser support,
JavaScript event handling, and codeless test automation of multimedia elements.

www.telerik.com/html5-testing

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-telerik
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-telerik

TE TER Insert strained cloud
pun here

Editor
Edward Bishop

editor@professionaltester.com

Managing Director
Niels Valkering

ops@professionaltester.com

Art Director
Christiaan van Heest

art@professionaltester.com

Sales
Rikkert van Erp

advertise@professionaltester.com

Publisher
Jerome H. Mol

publisher@professionaltester.com

 Subscriptions
subscribe@professionaltester.com

Contributors to this issue

Jeanne Hofmans
Stephen Janaway

Ole Lensmar
Martin Mudge

Erwin Pasmans
Wolfgang Platz

Contact

3

From the editor

We aim to promote editorial independence
and free debate: views expressed by
contributors are not necessarily those of
the editor nor of the proprietors.
©Professional Tester Inc 2012.
All rights reserved. No part of this
publication may be reproduced in any form
without prior written permission.
“Professional Tester” is a trademark of
Professional Tester Inc.

4

Professional Tester is published
by Professional Tester Inc

8

12

SUBS RC IBE

s FREE
It’

e e
for t st rs

16

Some testers are sometimes asked for
their opinion on operations. Some of
them may be wondering whether they
should recommend porting applications
to cloud. They should.

There are many things that foil testing.
They are the things that make our test
results unindicative of what will happen
in production. That defeats the object of
testing and limits its growth. One of them
is the test environment. It tends to be
different from the development
environment because building and
maintaining two environments tends to
be twice as expensive as building one.

But not with cloud. Infrastructure as a
service makes doing exactly that much
cheaper. So for cloud applications there
is no excuse for a test environment to be
technically different in any way from the

development environment. Testers are
freed to concentrate on the even more
difficult chronological difference: the
difference between current test and future
production data, including that provided
by external systems and/or originating
from real-time sensors. This problem is
theoretically impossible to solve. But, with
the technical problem solved by cloud, we
can try. We will never know the future but
we can learn more about what bits of it
matter most to the indicativeness of our
test results and so improve our guesses.

IN THIS ISSUE
TestDevOps

Looking Inside Testing Services

Factory model testing

Visit professionaltester.com for the latest news and commentary

Move closer
Lessons learned from a year of change to TestDevOps with Stephen Janaway

Closing the TestDevOps gap
Ole Lensmar explains web API testing

TestOps
Edward Bishop discusses testing’s role in DevOps

BizTestDevOps
Wolfgang Platz on practical governance of DevOps via test automation

Quality Level Management: who, what and how
Jeanne Hofmans and Erwin Pasmans in interview

Put the crystal ball away
Martin Mudge argues for the use of a pay-per-defect testing service

PT - October 2012 - professionaltester.com

20

24

easy: after the first release, a big bang
integration of two weeks of development
work happened every two weeks, never
without problems. The operators, quietly
and efficiently, kept the build farms and
tools running and updated. To the develo-
pers and testers, operators and their
functions were transparent and rarely
considered except on the rare occasions
the operators had no choice but to request
maintenance downtime of a dev, test, or
the production, environment. Indeed, these
occasions were the reason for their only
contact with developers or testers.

But the ops were unhappy. They were
spending an increasing proportion of the
two weeks on the integration, pressurizing
their own work, the vital necessity for which
is caused by change not to the application
under test but to third-party infrastructure
(including third-party software), time and
throughput.

The developers were unhappy too. They
were losing coding time investigating
incidents which turned out to be simple
integration issues.

Unsurprisingly, the testers were least
happy. They could not execute their newly
maintained tests even in the production
environment, let alone the test
environments which were given much
lower priority, until the next new
integration, which would require further
test maintenance, was nearly due.

This unhappiness continued until event-
ually the directors became unhappy too.
Their decision, broadcast to all concerned,
was: we are going agile.

Testers winced. They were used to working
with too little and too poor input (documen-
tation). Now they worried about getting
even less and worse.

by Stephen Janaway

Move closer

PT - October 2012 - professionaltester.com 4

TestDevOps

Don't stop

Stephen Janaway
reports on his
department’s transition
to TestDevOps

Independence has advantages. But
anything involving the phrase 'someone
else's problem' is rarely a good way of
working. My superiors decided my
department must change the relationship
between testing, development and
operations, to make it closer and more
productive. I agreed. Here is what happened.

The pursuit of happiness
Before that decision, we used a very
traditional waterfall methodology.
Requirements, usually defined by
strangers, were received. Architects
designed. Developers coded. Testers
tested. While (no one stopped them)
{Developers fixed defects. Testers
retested and regression tested}. Then
the products were packaged for delivery
downstream. Step by step, tick, tick, tick,
handover by handover.

This required sysadmins, build managers
and release managers. Their task was not

5PT - October 2012 - professionaltester.com

TestDevOps

happier. There is a lot more informal
communication: roles that did not talk
to one another before now do, even
sysadmins and directors occasionally.
Whether all this talk is a good thing
remains an open question, but I think so
because it is giving team members more
appreciation of what their teammates do.
This tends to help everyone to make a
contribution to every release.

If you believe as I do that testers should
foster close relationships with developers,
and developers believe they should do so
with operators, it seems logical that testers
should do so also. Thus we understand
why builds are late, items pass testing then
fail in production and so on, and this leads
to opportunities for us to help, take more
responsibility, improve process and so on,
keeping testing where it should always be:
at the centre of things. To achieve that in a
TestDevOps environment, testers must
develop the traits and skills of the other

groups. For example, a sysadmin needs
to be likeable, present ideas well and “get
things done”. A tester, when working
closely with sysadmins, needs to be able
to behave like them. I think our experience
endorses the common theory that inter-
personal relationships, built upon under-
standing of others and their roles, are
more important than tools or techniques.

We made some mistakes
Being encouraged to talk more caused
some testers to complain and criticize
more. That didn't make late builds arrive
any faster or be any better: finding ways
to help with them did. For example, before
we introduced CI we smoke tested pre-
builds, enabling the build managers to
integrate changes in stages and to concen-
trate on the next stage rather than testing
the previous one. It also helped us to un-
derstand how to use CI, which we now do
fluently, to great advantage to our testing.
If you are a tester in an organization

Operators winced. They were used to
working with too poor input (software).
Now they worried about getting even
worse, and more frequently.

To make the transition happen and
successful, a cultural transition was
needed: the realization that agile is not
about doing away with documentation, nor
with changing production more frequently,
but working more closely together. To
achieve that we (testers, developers and
operators) should not do one another's
work, but strive better to understand it.

This of course is easier said than done.
We struggled with it, especially our build
managers who were hit by a tsunami of
completed but unintegratable “tasks”
stressing their build farms and accom-
panied by cries of “it built fine for me” or
“the problem is caused by another task
which is wrong, speak to its author”.

Then we found our holy grail, the thing
that could make everyone happy.

Continuous integration using Jenkins
The developers liked it because they could
see their enhancements working sooner.
The build managers liked it because it
allowed them to get the incidents they
raised resolved faster. The sysadmins
liked it because it provided them with
a shopping list of new infrastucture and
tools they needed to implement it. The
directors liked it because it gave them
a management dashboard with meters,
coloured lights and simple controls.

The testers liked it because it gave them
builds worth testing sooner. But slowly, by
studying the work of the build managers
and sysadmins, the testers learned how
to use it themselves. They started to control
the builds, as testing should. As the build
approached adequate quality, testing acted
as a formal gateway, with all entailing
responsibilities, to downstream delivery.

The secret of our success
A year later, we're convinced that the
change has made the department more
efficient and most if not all individuals

TestDevOps

mation of test, for the same reason. Not
having it was dangerous because needed
builds still sometimes failed and needed
test environments were still sometimes
unavailable: testing was not ready for the
improved process to fail. When we finally
did get all the things we needed we set
about manual testing that should have
been automated. When the things chan-
ged, which was now frequent, we had to
start that manual testing again. It got a bit
like Groundhog Day.

We were saved by an improvement in
operations, automated deployment, which

moving towards TestDevOps, start by
learning more about the process by
which products are delivered to you.

We assumed that all testers could and
wanted to get involved at a very technical
level. Beware of allowing good testers who
find that difficult or uninteresting to become
worried about it. Testing is a complex
discipline with its own specializations. It's
not necessary nor, arguably, desirable for
a person capable of performing one of
them to spend effort becoming also an
expert developer and operator. There is
a part of testing which is pure testing and
should not be subject to influence from
other roles.

Once we had CI working well for us, we
rested on our laurels for a little while and
that was wrong. Having helped to achieve
greater automation of dev and ops, so that
they could integrate better, we should have
realized we now needed greater auto-

lets testers pick up a device with the corr-
ect build ready to test at any time. But in
the period when we had CI but not AD,
significant testing time was lost. It's vital to
remember that process improvement, once
started, is continuous: if you are not ready
to continue it, it's better not to start it.
TestDevOps, which I see as a process
improvement initiative, is largely about
automation because automation is the
common ground between the three roles.
Testing in TestDevOps must never stop
seeking to increase and improve test
automation, so that more of testing can
be integrated with dev and ops

Stephen Janaway is a test manager who has worked for Ericsson, Motorola and Nokia.
He blogs on testing at http://stephenjanaway.co.uk. Jenkins is available free at
http://jenkins-ci.org

The crisis will
make you WISeR!

> Web access
> Requirements, Tests, Bugs
> Schedule / Continuous integration
> Versioning
> Customizable
> more than 40 automation test
 frameworks supported
> manual Tests

NOW is the time to invest into a ReaLLY affordable tool.
XStudio, the revolutionary aLm/Test management solution

for only $180 per user.

create.trust

www.xqual.com

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-xqual

Agile is going places – are you?

01
79

3/
P
D
S
/A
D
/0
81

2

© BCS, The Chartered Institute for IT, is the business name of The British Computer Society (Registered charity no. 292786) 2012

BCS, The Chartered Institute for IT,
o ers the leading agile testing
certification for software testers –
Certified Agile Tester.

bcs.org/agiletester

The Certified Agile Tester scheme is a trademark of iSQI.

01487_pds_ad_hp_cat_proftest_ma_Layout 1 10/08/2012 14:27 Page 1

AXE - A TEST AUTOMATION SOLUTION THAT ACTUALLY DELIVERS

85% OF ALL TRADITIONAL SOFTWARE TEST
AUTOMATION INITIATIVES FAIL!

15% Success

11% Tool Incompatibility

17% Insufficient Budget

20% Lack of Experience

37% Lack of Time

Source Data: IDT

The Axe platform introduces a new class of test automation technology which simplifies
test automation tasks, delivering fast results, easy maintenance and quicker return on
investment. A complete code and documentation generation platform, aimed at testers
and leveraging existing tool investment, that will revolutionise your test automation
regime.

FREE WHITE PAPER DOWNLOAD:
www.odintech.com/downloads

WWW.ODINTECH.COMNEW: SUPPORT FOR VS2012, RQM AND SAP GUI SCRIPTING

AXE 3.4 RELEASED!

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-bcs
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-bcs
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-odinwp
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-odinmain

deployment functional and performance
monitoring. The concept of pre-versus-
post deployment testing has already
become meaningless. The quality
attributes tested before deployment are
chosen for their importance after it, and
are the same as those tested when
subsequent change occurs. The
difference is between the testing
practices and tools used at different
points in the lifecycle. I think of this as
testing's own “DevOps gap”. In this article
I will discuss how to close it.

The key is to use exactly the same test
assets both pre- and post-deployment.
Otherwise, there is no way to assess the
realism of the lab tests and, if any of them
fail in the production environment, no way
to tell which. The test environment and
tools must make it possible to:

reuse pre-deployment test assets for
post-deployment monitoring

monitor key functional transactions and
performance metrics continuously
during pre-deployment testing

add assertions to tests, for example
defining rules about the validity of an
element in an XML-encoded response
to a given input

add realism to tests, for example by
data-driven testing, inserting varying
“think time” and simulating attempted
SQL injection.

Assert yourself
Luckily, the nature of web APIs helps with
the task of designing a gap-free method-
ology. By definition, any API-accessible
web application comes with its own
“command line”, ie the API itself. That
removes one reason why pre-deployment
software test assets might need to be

by Ole Lensmar

Closing the TestDevOps gap

PT - October 2012 - professionaltester.com 8

TestDevOps

From test reuse to test unification

Most software is unfinished. As long as it
remains in service it is subject to change,
and probably will change, in response to
new requirements and newly discovered
defects. Changes made before deployment
are considered good because they reduce
the need to make changes after
deployment where they are considered bad
because they can cause regression. The
tension between good and bad change is
especially high in the rapidly growing
domain of web APIs, which inhabit a much
more dynamic environment than most
software, including non-web APIs. They are
more sensitive to environmental change
because they usually have many external
dependencies, and their rate of change is
higher due to market change, technology
change and other forces.

That's why functional and performance
monitoring, tuned to the end user
experience, is now part of pre-
deployment development testing, and
why pre-deployment development
testing is closely tied to post-

9PT - October 2012 - professionaltester.com

TestDevOps

each of which responds to a particular
request: SOAP, REST, HTTP, AMF etc.
The response should not change when
the API is deployed so neither should
test steps.

In functional testing, the correctness of
the response is checked using assertions.
Here is how that is done using the Open
Source tool soapUI. SoapUI generates the
requests automatically from the WSDL file.
Clicking a request displays it and the API's
response message to it (see figure 1). To
create an assertion, right-click any ele-
ment in the response and select the
assertion type (figure 2), then use the
configuration panel which appears
(figure 3) to define your assertion. For

example, an “XPath Match” would be used
to assert that a target element contains a
particular value: otherwise, the test
will fail.

Be realistic
Assertions don't change at deployment
because the logic exposed by the APIs
does not change. What does change is
the environment. That includes the
underlying data layer, so it is important to
craft test assets so that they are not
affected by eventual differences between
pre- and post-deployment data
environments.

The tester's role of course is to design
tests that are realistic: in other words,
that predict production conditions with
sufficient accuracy to detect all important
defects before deployment. For web APIs,
completely vulnerable to the unknown
behaviour of the systems that use them,
that's especially difficult to achieve and so
it's common, even typical, for web APIs to
pass testing but fail in production. But
the more realistic the tests, the fewer
the unexpected failures and therefore
the better their cost and risk (both project
and product) are contained. Experience
shows that the most likely causes of
failure despite effective functional testing
are related to unexpected volume, load
and security. Therefore realistic testing
must include these test types.

Volume testing is best achieved by the
data-driven approach. Whereas in
functional testing that is used to improve
coverage and exhaustiveness, here the
aim is to discover requests that cause the
APIs to read, process and/or update huge
numbers of records from an external data
source, and measure how well APIs
cope with them.

Testing under load aims to measure how
well APIs perform when the numbers of
simultaneous requests, and of those with
various characteristics, fluctuate:
especially when they rise. The most
stringent tests are often engineered to
include the high demand requests
discovered during volume testing. LoadUI

different from post-deployment software
test assets. In many non-web situations,
developers create a different version of
the software specifically to add command
lines and create custom scripts whose
only purpose is to test against those
command lines. After deployment, diffe-
rent test assets are needed to monitor
the “real” software from an end-user's
perspective, for example additional
custom scripts to run against a
user interface.

Moving from pre-deployment to post-
deployment testing the API doesn't need
to change, so there is also no need to
change the test script. Every web API
exposes operations and/or resources,

Figure 1: Response message

Figure 2: Assertion types

Ole Lensmar is CTO and co-founder of SmartBear Software in Sweden, formerly
known as Eviware Software, which created soapUI and was acquired by
SmartBear in 2011.

The free, Open Source soapUI, and free trials of soapUI pro, loadUI and AlertSite,
are available at http://smartbear.com

10

TestDevOps

PT - October 2012 - professionaltester.com

assertions can be used. For example, all
tests can include the assertion that the
string “Microsoft Windows” does not
appear in the response. This might lead to
some false positives, but they will usually
simply confirm that the assertion is
working as intended to protect against
actual failure.

Turn on, tune in and don't drop out
Unifying pre- and post-deployment testing
brings benefit that works in the opposite
direction. The results of post-deployment

reuses soapUI's functional tests for this
purpose and allows meters (for better
result capture) and control modules
(to improve realism) to be connected
to them (figure 4).

As well as executing tests derived from
predicted deliberate attacks, for example
well-known SQL injection strings such as
' or '1'='1, web API security testing should
aim to detect the presence of inappro-
priate data in responses to innocent,
but failure-causing, requests: common
examples include stack traces and third-
party software version/configuration
information. Both are easier when testing
web APIs than other software types,
because all inputs are encapsulated in
requests rather than more complicated
things such as user navigation behaviour,
and because negative as well as positive

testing are fed back to pre-deployment
test design, especially usefully when
requirements and/or design change.
Understanding the behaviour of APIs
in the actual transactional context can
also drive operational decisions such as
how to re-cluster infrastructure or
provision cloud resources. Using the same
tests created during development for post-
production monitoring gives testers and
developers a head start on using and
reacting to monitoring because, having
designed the tests and resolved past
incidents raised from them, they know
the context and meaning of its results.

To achieve this, the tests are deployed to
the production environment, that is the
web. For example, soapUI tests can be
executed on more than 80 monitoring
sites worldwide comprising SmartBear's
AlertSite network, providing full step-
and assertion-level results plus response
times and other statistics, from actual
production conditions. Applying load in
production for testing purposes can cause
performance or even reliability failure, so
careful load design and scheduling are
necessary.

Whether or not tests fail, the comparison
of results of the same tests executed pre-
deployment, post-deployment and after
operational change offers insight into what
causes variation, for example infrastruc-
ture and network issues, usage patterns,
user behaviour or unrealistic test data.
Ultimately of course what matters is the
service delivered to whatever consumes
the service provided by the API and how
it affects users. A unified test methodology
creates a feedback loop whose resonant
frequency is user experience. Everything
else, including application, test and
monitoring design is tuned to that.
It never stops

Figure 4: Meter and controller added to a functional test in loadUI

Figure 3: Assertion configuration

Ride the wave.
Stay on top with TestWave.

Running a test project takes coordination, patience and endurance. You need to keep track of what’s been
tested, what needs to be tested and who should be doing it. Without a test management tool, your work
just gets harder. TestWave keeps track of all your test cases, requirements, releases and defects in a central
location to improve your efficiency. Since TestWave is cloud based you can be up and running in minutes,
not weeks, allowing you to be immediately productive.

Automation Consultants Ltd. Email: info@testwave.co.uk © 2012 Automation Consultants Ltd. All rights reserved.

Testing is complex - why not make it simple?

www.testwave.co.uk

• A full test management tool incorporating requirements, test planning, execution and defect management
• Delivered and hosted online: no complex installation and no costly servers (onsite option also available)
• Test teams can be using TestWave within minutes from anywhere in the world
• Extensible - interfaces with applications such as JIRA® and Quick Test Pro®

For a free 30-day trial or for more information visit our web site.

ad4.indd 1 9/19/2012 12:03:25 PM

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-testwave

PT editor
Edward Bishop
envisages automated
operations testing
using Ranorex

Many PT readers work in environments
where a new release of the product is an
important event which, to avoid severe
loss, must take place on a date arranged
long before. That may be for example
because users require or have been
guaranteed new or changed features from
that date, to maintain business-critical
compatibility with other systems, or to
comply with changed regulations. In the
case of publishing user-distributed
(“shrinkwrap” or “commercial off-the-shelf”)
software it might be because facilities have
been booked to produce, finish and
distribute physical media. The replacement
of that by online distribution helps by
reducing lead times but rarely makes the
deadline, chosen for strategic or set by
contractual reasons, more flexible. It hardly
ever makes the quality of the release less
important because asking users to apply
urgent updates soon afterwards will usually
cause business damage of the same kind
as lateness of the main release.

DevOps, the concept that developers and
operators (system administrators,
infrastructure engineers, DBAs etc) should

work more closely together, applies to none
of these situations. It has evolved from ex-
periences gained in “continuous” environ-
ments, where the application – often public-
facing – remains centralized and is acces-
sed by users via web or cloud. That has the
huge advantage to those producing it that
it can be changed quickly and easily.

The resulting shift in priorities should be
an opportunity for business improvement.
It empowers those making decisions about
the release to take into account more
factors, especially the expected behaviour
of users and customers. It makes their
choice less stark by providing an extra
option: release parts now and more later.
It makes it possible to perform a balanced,
strategic release based on business
optimization (usually revenue maximi-
zation) rather than technical risk.

DevOps is often confused with agile
development. The latter is older and can
be used in the situations described in my
first paragraph (which is not to say doing
so is necessarily advisable). It was inven-
ted by developers frustrated by working
to requirements who felt that maintaining
documentation and resolving incidents
raised because of apparent differences
between it, its sources and what they were
producing made them less creative and
productive. The most enjoyable part of
programming is solving problems, therefore
a programmer allowed to write wrong code
then fix it will tend to be happier than one
disciplined by processes designed to mini-
mize, rather than repair, defects. The code-
fix approach requires frequent builds with
rapid empirical testing to provide the infor-
mation needed to fix. The logical extension
of this is continuous integration, where the
build being tested is always up to date.

Thus developers, as they often have and
do, won the right to work the way they

by Edward Bishop

TestOps

PT - October 2012 - professionaltester.com 12

TestDevOps

Testing still has no clear role in agile, but
is central to DevOps

13PT - October 2012 - professionaltester.com

TestDevOps

as you build – prevents the real advantages
of releasing more frequently from being
realized. The role of independent testing
here is to qualify, or not, candidate builds
for release, enabling decision makers to
choose the most effective and least risky
of those available to deploy at any
given time.

Releasing even a qualified build often
causes unexpected effects due to differen-
ces between the production and pre-pro-
duction environments. Making them as
similar as possible helps, and innovation
in virtual infrastructure is reducing the
cost and effort required to do that, but
the problem is far from eliminated. For
the foreseeable future operators will
continue to need to regression test after
every change, immediately and as quickly
as possible, in order to decide whether to
back the change out in order to minimize
the number of users that experience failure
or, even more importantly, avoid disastrous
data corruption. The role of testing is to
provide the means to perform the neces-
sary testing effectively, based upon the
current state of fast-changing business
requirements rather than upon the
expectations of developers.

To some, “DevOps” means something else:
that two roles should be merged to create
a new one. This is already reality in small

web teams, and cloud is making non-web
more like web. The devop needs the skills
and knowledge of both developer and
operator. He or she has sufficient know-
ledge of the code to be able to modify it to
fit operational requirements. How will these
modifications be tested? Rather than just
changing configuration or data, the devop
is responsible for writing code to perform,
reverse, amend and manage that change,
ready for reuse and perhaps integration
with the product. Will this dangerous code
be independently tested?

If merging roles with different goals and
mindsets in this way seems far fetched,
consider this: agile has already done it for
testers and developers. Agile development
teams with responsibility to anyone other
than themselves always contain at least
one person we might call a “testdev”. It has
been suggested by some agile advocates
that every team member should be able to
do any other member's job. This false
ideal ignores human nature and the fact
that the longer one remains in a
specialism, the better one can become at
performing it. Nevertheless, if operators
are to become devops, testing must help
them become testdevops.

Ranorex and TestDevOps
I described previously in PT how the code-
level approach used by the test automation

prefer. Years later, whether or not that is a
good thing is still an open question and the
argument shows no sign of being resolved
soon. On one hand, agile necessarily
wastes work: code, and therefore tests,
are repeatedly replaced and revised. On
the other, agile can make accommodating
frequent change, especially of require-
ments, faster and easier. Much depends
on roles: agile may be appropriate in situ-
ations where developers define require-
ments and bear cost and risk. When those
responsibilities rest with others, questions
about how their interests can be adequately
protected become more complicated. The
developers who first advocated agile, and
many of those doing so today, had and
have no understanding of nor interest in
independent testing. Indeed, ignoring
testing is one of agile's key aims: the
developers do not like being disrupted
by the availability of information indicating
that work done so far should be corrected
before further work is done so they have
done away with any adequately formal
definition of correctness, making testing
impossible. To make any contribution
testing has had to change radically, dis-
carding many of its proven best techniques.
It is still trying to discover how to make that
change and testers in agile environments
are either marginalized or, more often, not
really testers but a kind of developer or
developer's assistant. “Test-driven develop-
ment” is in no way a replacement for testing
because it compares code with
its own component-level design speci-
fication, such as it may be defined,
rather than against requirements.

Continuous integration, a preferred method
of some developers working on builds, is
quite different from continuous deployment,
the raison d'être of operators responsible
for releases and the configuration and data
structure changes they require. It is not
acceptable intentionally to risk causing
failure when that will cause risk and loss
in real time. Operators must aim to
minimize incorrect behaviour of all kinds,
functional and non-functional, and that's
incompatible with agile's try-fix-try again
approach. This confusion – the idea that
the point of DevOps is to release as often

Figure 1: Invoking a C# method from Ranorex Recorder

A free trial of Ranorex is available from http://ranorex.com

TestDevOps

A Ranorex project is a .NET project, so any
test suite can be run by launching a .EXE file
from the command line. Doing this manually is
fast and easy, which is important to operators
who need to execute selected suites
repeatedly after each step in the change they
are carrying out, including backout steps. It
also makes it easy to port tests to multiple real
or virtual clients for simultaneous execution of
different tests against the live system, saving
crucial time. More importantly, it enables the
testdevop to integrate real testing into the
batches and scripts used to automate
operations. A script can be written that tests
the effects on users of its own actions and, if
they caused regression, backs them out.

tool Ranorex facilitates powerful sharing of
test assets between testers and developers
(http://www.professionaltester
.com/files/PT-issue8.pdf) and enables
innovation in test design and implemen-
tation (http://professionaltester.com/files/
PT-issue13.pdf). The same facilities offer
approaches to fulfilling the roles of testing
in DevOps I've identified in this article.

Ranorex Recorder, the module used to
automate test procedures, is extensible.
Because the recorded procedure is simply
a code module, it can invoke and pass
parameters to methods in a C# class (see
figure 1). These invocations, added during
or after recording, create great potential for
test code reuse and for integrating testing
with ops. For example, by writing simple
classes called login() and logout(), the
testdevop can be provided with
parameterized suites executable against
any easily-specified group of test, or real,
users, without access to their
passwords or necessity for dangerous
backdoor passwords.

Ranorex identifies an interface object by
its “RanoreXPath”, similar to an XPath
with the client OS GUI as the root. This
means test suites can include control of
and validation of the output of any
combination of applications including ops
and monitoring tools.

Thus it becomes feasible to automate
validation of automated operations steps
from the user's, operator's and
application manager's points of view.
This is how the dangerous concept
“control everything in code” proposed by
agilephile DevOps advocates can be
made safe and workable

DevOps, ALM, Process Improvement and Agile Testing events
Professional Tester magazine is the Media Sponsor of four conferences taking place in Amsterdam
and London during November and December.
The series begins with three co-located events in Amsterdam on 15 November which address the
specific themes DevOps, Application Lifecycle Management and Process Improvement.

DevOps Summit Europe: Enabling DevOps
15 November, Amsterdam
www.devopssummit.com

Application Lifecycle Management (ALM)
15 November, Amsterdam
www.unicom.co.uk/almforum

Recent Trends in Process Improvement: Focus on Products & Services
15 November, Amsterdam
www.unicom.co.uk/processimprovement

The 8th Next Generation Testing Conference:
Agile and Business Focused Testing
6 December 2012, London
www.next-generation-testing.com

For information:
+44 (0) 1895 256 484 info@unicom.co.uk

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-unicomdevopssummit
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-unicomalmforum
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-unicomprocessimprovement
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-unicomng

One of the Biggest Conferences
on Software Quality and Testing

Jan. 15 - 17, Vienna

 Register online now!
www.software-quality-days.com

Quality - Investment for the Future

Keynotes, practical presentations, exhibition, tutorials,
solution provider forum, scientific track,
tool challenge, networking,

TOP KEYNOTE SPEAKER:

 Prof. Manfred Broy
 Richard Mark Soley
 Hermann Scherer

TOP SUBJECTS:

 Requirements
 Testing and automation
 Quality management
 Embedded systems

2013

2013

2013

2013

2013

2013

2013

2013

Jan. 15 - 17, Vienna

Keynotes, practical presentations, exhibition, tutorials,

MORE INFO ONLINE!

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-sqd
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-sqd
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-qatest
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-qatest
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-adminitrack
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-adminitrack

to less damage with more time and
options for repair. That won't be achieved
by earlier testing alone, but can be by
testing that begins to drive and inform
development earlier. In my opinion the
way to do that is early production of
comprehensive test cases which form an
integral part of the requirements specifi-
cation. This concept is sometimes called
“specification by example”.

Governance of operations requires early
test automation
The information contained in the test cases
is also critical to the handover of the new or
changed product from development to ope-
rations. Where infrastructure considerations
allow, governance may be applied by dis-
allowing change in production until it is
shown that all test cases pass with the
change in place in pre-production. More
typically, governance means putting deci-
sions about the change into the hands of
business management, not developers or
operators. The test cases do that by provi-
ding correct, current, business-interpretable
information on the remaining business and
technical risk.

Neither governance method is possible
unless the test cases can be executed very
quickly and efficiently. Given that, testing
achieves “business shift-left” a second time.
A high level of test automation empowers
governance of operations, working to pre-
vent failure too close to, or in, production.
To achieve that, the test case portfolio must
be not only defined early but automated
early which necessitates deriving the
automation from the requirements, not
having to wait for an executable build
of the product to do so.

The need for speed
People working in agile development
environments are kept short of time
deliberately. It is by this self-enforced

by Wolfgang Platz

BizTestDevOps

PT - October 2012 - professionaltester.com 16

TestDevOps

To shift left, specify change directly as
business test cases

Wolfgang Platz on
testing as a means
to govern DevOps

Whatever DevOps changes, testing must
continue to govern development. Testing in
itself is not a changing force: rather,
business is. Business changes drive the
need for higher quality testing with less risk.
The effect of moving development and
operations closer together is to broaden
the role of testing by making it necessary
for testing also to govern operations.

Governance of development requires
early test specification
To meet its aim of optimizing the efficiency
of the process by which business
requirements are fulfilled, testing must
begin before development (including
development of change to an existing
product). Testing has always striven,
correctly, to do more earlier, but that is
often prevented because business and
development perceive it as a brake,
preventing progress from building initial
momentum. Experience has caused
business to become more enlightened, as
expressed in the now often-expressed
desire to “shift left”, that is to place more
hard and risky work earlier in the timeline
where, if it does not go as hoped, it leads

17PT - October 2012 - professionaltester.com

TestDevOps

because its starting point is a risk-based
structure of functionality down to the level of
user stories, so we know exactly the
business value represented by each test
case, the risk if it fails, and the need to
design and/or execute more test cases.

For example, the risk can be described to
decision makers thus:

we have proved that functionality
representing 95% of the product’s
business value (ie business risk if
functionality were not available) will
work correctly

we know that functionality representing
1% of the product’s business value will
exhibit specific, known failures we can
describe exactly. You can choose to live
with them or wait for repair and retest

the remaining 4% of business risk has
not been covered: we don’t know if or
how it may fail. You can choose to take
the risk or pursue further testing.

This is far more meaningful than talking
about numbers of tests executed, passed
and failed. Without knowing the coverage
and therefore relevance of each test case,
that tells those responsible for governance
nothing of use.

Governance of multi-platform
development
DevOps has evolved in part because of the
diversification of the work of software orga-
nizations, with multiple versions of target
applications being delivered for and using
multiple platforms, devices, technologies
and operating systems.

In governing all these different develop-
ments and operations, carried out by
different people, the critical success factor
is that there is always an interface to the
functionality to be tested, presented from
the testing perspective on the most
elementary level possible.

Take for example a native app (or rather,
three apps) for three different device OSs.
Both client components interface to a

server component that performs business
logic. If the component also serves a web
application, this interface is probably
already described by a web services
specification using one of the many
available standards. If it is not, develop-
ment must be required to ensure that all
functionality of the server component can
be addressed via a public interface of this
or other types, for testing purposes.

Using that interface, many if not most of
the important test cases can be executed
with no need to involve the client device.
A few simple additional tests are added
to test the connection of the device to the
interface. Now it is simple to mirror those
additional tests for other devices.

This vertical decoupling (that is, converting
dependencies into services) of layers can
and should be applied to multiple layers of
other systems too. It does however have
one weakness: the interface specification
is likely to be technically complex, making
it hard to relate business requirements to
the tests needed to assure them. TOSCA
resolves this issue using its OneView tech-
nology which presents any test case speci-
fication, regardless of whether it is for ma-
nual or automated execution and relates
to a GUI or non-user-interface, on the
business level in an easy to understand
format. This is the key to increasing the
amount of testing which can be automated
early, with all the attendant advantages
I have already described.

In some cases more testing of the client
component is needed because it, rather
than the server component, performs
significant business logic. The first target
for early test automation should still be
non-GUI methods: these are always more
(typically, I estimate, around five times
more) stable than GUIs. TOSCA's instruc-
tion layer abstracts a test case from the
specific interactions with the GUI as de-
signed for a given device needed to exe-
cute it. Having the knowledge required to
execute the test (called “steering infor-
mation”) is delegated to a manual tester
at first, then captured and automated
when the differences between them and

urgency that the process is driven forward
in an attempt to ensure it does not fall be-
hind the real, external, business urgency
that requires the product. However attem-
pting to shortcut requirements
specification is a false time economy.
When deriving and refining requirements
in discussion with users, teams must be
able to record exactly what is required.
Otherwise, they have not understood the
user story and do not know what is
required. This will lead to over-fulfillment,
the development of what is not required or
necessary. The measures taken to
prevent that must be extensive.

The question is how to record. User stories
are never complete nor completely explicit,
yet assumptions and misunder-standings
cause waste and delay. So the answer is
not glib snippets written on sticky notes or
cards. Neither is it natural lang-uage
documents which take great effort
to produce and are never right, or models
which are open to interpretation. Skip all
of these and go straight to concrete speci-
fications by example, ie test cases. With
these, developers know always exactly
what they are tasked to develop against.
They are like code: they may vary in ele-
gance and efficiency, but they are either,
and provably, correct or not.

Agile is a rapid development strategy
therefore requires a rapid test case
definition strategy. At TRICENTIS we
typically spend two hours designing test
cases to describe a very long and complex
user story using TOSCA Testsuite. That's
nothing compared to the effort that will
follow, but reduces that effort and the risk
it entails because when it is done everyone
knows the specification is correct, the user
story is properly understood and the initial
design for the handover to operations
is ready.

Governance and coverage
In TOSCA's approach to test case design
and automation, “coverage” refers to
measurement of business risk. It means
being able to state accurately at any time the
business risk of putting the test item into
production at that time. TOSCA achieves this

18

TestDevOps

PT - October 2012 - professionaltester.com

to provide evidence that the testing being
done is a good means to governance, in
other words to measure the effectiveness
of testing. In my opinion the most important
metric for this purpose is the weighted
good/bad defect ratio.

A good defect is one that is detected in
time to prevent it reaching production.
Whether that detection happens during
early test design or in pre-production with
minutes to spare makes no difference.
A bad defect is one that reaches
production so that a user can become
aware of its existence. Whether a defect
detected in UAT is good or bad depends
on who detects it, but most TRICENTIS
customers would always consider it bad
because (i) user representatives could
become aware of it and (ii) it disrupts and
delays UAT, necessitating a wait for repair
followed by a return to system testing for
retesting and regression testing. The

the equivalent tests on another device have
been established. Hence there is
only one set of test cases, purely business-
driven, for all devices; only the steering
information differs.

Big data and compliance with external
governance
Many TRICENTIS customers in the
financial and banking sectors need to
provide comprehensive risk reports to
various external authorities, for example
for compliance with the Sarbanes–Oxley
Act or the eighth EU Company Law
Directive (sometimes called “EuroSOX”).
Failure to do this to an exacting standard
of accuracy can lead to exclusion from
markets with enormous financial loss.
The systems that create these reports
therefore require rigorous testing, of their
data processing functionality but also of
the quality of the initial input data they
derive from the primary systems.

It is common to do this latter part of the
testing manually, using hypercomplex SQL
queries executed against the different
staging levels. The complexity makes the
work error-prone and the very large volu-
mes of data and the high resource con-
sumption of performing, especially, opera-
tions using the JOIN keyword cause long
processing times, limiting the checks that
can be performed.

TRICENTIS TOSCA@BigData provides
the advantages of OneView using new and
unique technology created specifically to
address this issue. Again the starting point
is business-driven test cases defining what
needs to be done. From these TOSCA
creates, dynamically at runtime, an opti-
mized set of SQL queries containing as
few JOINS as possible, and requiring each
of these to be executed only once.
Advanced aggregation and examination
algorithms allow comprehensive checking
of the data returned.

Self governance
No discussion of testing as a means to
governance would be complete without
defining a means to validate testing, that is

Wolfgang Platz is founder and CEO of TRICENTIS. For more information about
TOSCA Testsuite visit http://tricentis.com

weighting is simply the severity currently
assigned to the defect in the incident
management system.

This metric does not take into account
defects that have not yet been detected.
In my view, it should always be assumed
that no more defects will be detected: in
other words, a defect not yet detected
should be considered not to exist. This
may seem odd, but it is the only logical
course because including guesses about
imagined defects that may or may not be
found in what is supposed to be an
empirical metric is wrong. For that reason,
metrics like this are purely retrospective.
They indicate past, not current product
quality and are in no way a guide to
remaining risk. The information needed
for governance, that is predictions about
defects that may be yet to be found, can
only be obtained using detailed, granular
coverage information

Have any questions or need detailed
advice? Feel free to call us:

+49 6171 69410 - 0
A product of

www.q-up-data.com

The Test Data Generator

Obere Zeil 2
61440 Oberursel
support@q-up-data.com

Generates any kind of data for your test

Q-up allows time and cost savings up to 90%
compared to manual creation of test data.

• Create meaningful test data

• Specify business process oriented test data

• Automatically generate test data

• Connectivity and performance

E s s e n t i a l f o r s o f t w a r e t e s t e r s
TE TER

professionaltester.com

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-qupdata
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-PThousead

of the quality of the product the service
user must have complete understanding
of the meaning of the report. That requires
complete knowledge of how it is created,
ie what is measured and how, and how
it is summarized.

Jeanne Hofmans and Erwin Pasmans are
currently completing their book on quality
management in outsourced projects with
large IT components. Here we ask for their
advice on how to look inside testing
services.

Who should engage the testing service?
Reports must be designed for the reader.
Cognizant's are for “business and IT
stakeholders”. Other roles, for example
project managers, lead developers or test
analysts, would require very different
reports in order to be able to achieve
confidence in the testing done and
therefore in the product.

In your opinion, which role is the easiest
to which to report well?

JEANNE HOFMANS and ERWIN PASMANS:

Quality is a subjective concept. In his
famous book Quality Software
Management: Systems Thinking (Dorset
House, ISBN 9780932633729) Gerald M.
Weinberg defines it as follows: “quality is
value to some person”. James Bach
modified this to “quality is value to some
person that matters”, making explicit an
additional point already made by Weinberg
in the original context. That subjective
nature makes defining and establishing
quantitative quality reports very difficult, if
not impossible. Thus the question “which
role is easiest to which to report well?”
should be replaced with “who matters
most?”. Once that is determined it should
be determined what matters most
to that person or persons. In other words
who is easy to report to is not relevant. You

Quality Level Management:
who, what and how

PT - October 2012 - professionaltester.com 20

Looking Inside Testing Services

A new model for managing IT product
quality in outsourcing relationships

Our series of features
on how testing services
should work continues.
With Jeanne Hofmans
and Erwin Pasmans
of Improve Quality
Services

In the first edition of LITS (see
http://professionaltester.com/files/
PT-issue16.pdf) Vinoth Kumar described
the information Cognizant provides to
users of its testing services. That is a
critical activity in any service model, but
especially that of a testing service because
measuring the effectiveness of testing is
very difficult.

Testing should increase confidence in
quality. That does not happen because few
defects are detected, nor because many
are detected and fixed: both phenomena
should decrease confidence. Increased
confidence comes from knowledge and
understanding of the passed tests, gained
by digesting much information. It's not easy,
but it can be achieved by close observation
of the testing work as it proceeds, or ideally
being involved in it personally. Converting
testing into a service removes first-hand
visibility and creates dependency on
reporting alone. A test report is by
definition a summary, that is it deliberately
omits information: it would be impossible to
use otherwise. To have accurate knowledge

21PT - October 2012 - professionaltester.com

Looking Inside Testing Services

Collecting metrics is an example of a
detective measure on product level. The
use of dashboards, showing the progress
of testing is an example of a detective
measure on process level. Determining
relevant stakeholders and involving them
is an important activity on organizational
level. All levels are needed to report
meaningfully about quality.

What should the service provider
measure?
Different reports require different inputs.

In order to report meaningfully to
“who matters most”, what needs to
be measured and how should that
be done?

HOFMANS and PASMANS: To report
meaningfully a key factor for success is to
limit the amount of metrics. A limited am-
ount of metrics is easier to understand to
all involved, especially because metrics
should be interpreted carefully. Few defects

should report to the people who matter and
report on what matters to them. They have
probably had a hard time defining what
matters most to them and will probably
change their mind over time.

That is why we agree that increased
confidence comes from close (personal)
observation of the testing work as it pro-
ceeds. We disagree however that conver-
ting testing into a service removes first-
hand visibility and creates dependency
on reporting alone. To be successful one
should not depend on reporting alone.
The visibility should be stimulated and
simulated (eg using cameras and screens)
as much as possible. Visibility is a key
factor in the success of metrics. They
should be shared amongst the team.
Preferably both customer and supplier
are able to view the metrics in a shared
dashboard. Using this dashboard as an
entry point, team members such as lead
developers and test analysts find the
detailed information that is needed.
This visibility and openness is not only
applicable to the metrics of the product,
but also to dashboards that report on
process level and to the organization as
a whole. On organizational level it helps
to pay visits so that team members get
to know each other. It also helps to have
screens in the office displaying the team
working at another place.

The focus on several levels (product,
process and organisation) is key in our
book, in which Improve Quality Services
presents a new model that addresses
several solutions of managing quality in
outsourcing. Numerous solutions are
already widely available for problems in
either outsourcing or quality management,
but until now there was not one universal
model or framework to approach these
problems.

The Quality Level Management-model (see
figure 1) has two main dimensions
regarding measures to improve and sustain
quality: levels at which measures can be
taken: organization, process and product;
types of measures: preventive, detective
and corrective.

O
rg
an

is
at
io
n

P
ro
ce

ss
P
ro
du

ct

Preventive Detective Corrective

Types

Le
ve
ls

Figure 1: levels and types of measures in the QLM-model

22

Looking Inside Testing Services

PT - October 2012 - professionaltester.com

clustering, the phenomenon that defects
tend to cluster in one area or component.
A good tester does report this so it can be
decided whether further targeted testing
should be performed. Good testers also
divert from the test script if there is a
reason to do so. They also report strange
side effects: dynamic implicit testing. This
is impossible to grasp in quantitative met-
rics. The use of both quantitative metrics
and qualitative information of testers aids
decision making based on risks.

The best chance for success in passing
the responsibility of a test item is to use
detective measures at all three levels. At
product level review the test cases and
requirements, perform some witness or
acceptance testing. At process level per-
form some collaborative quality scans or
audits to check if risk analysis meetings
are held, if configuration management is
working properly. At organizational level it
is very wise to talk to the people involved.
Knowing that testers are well capable
and understand the perceived risks of

does not automatically mean the product is
of good quality. It could also indicate testing
is not taken seriously. The effectiveness of
testing decreases as it takes much more
time to decently report bugs. Is a testing
service performing badly if the code that
is being delivered is poorly maintainable?
Perhaps users are satisfied with the
product delivered but the maintenance
department is not. And is that same testing
service doing a good job if they achieve
100% requirement coverage? Perhaps the
requirements are poor or very generic.
Perhaps every requirement is traceable to
a test case, but that test case covers only
a small part of that requirement. Just
measuring test effectiveness is not enough.

As in test framing, the process and the
story of the product must also be told. The
story contains the highlights of the test ap-
proach, the constraints of the test process
and the results of testing. Often the cus-
tomer is not specialized in IT processes.
The story of the product contains more
information than a report full of metrics.
80% decision coverage is meaningless
if the code of the remaining 20% is used
most often or in critical parts of the product.
That is why reporting should be about
risks. This can be accomplished by listing
items covered versus items not yet covered
by successfully executed test cases. Not
just the reporting, but also the testing itself
should be about risks and defining appro-
priate measures. Stakeholders worry most
about potential failures and their impact.
Therefore these risks should be agreed
upon by the stakeholders and reported
back during and after testing.

How should the service's reports be
actioned?
Testing should aid decision making.

How can who matters most know (i) the
risk of allowing a test item to pass out
of their responsibility; (ii) by how much
and how quickly more testing can
reduce that risk?

HOFMANS and PASMANS: An important aspect
is that good testers are aware of defect

the stakeholder can give a huge confi-
dence boost in the testing performed.

Reducing risk is not just about taking
detective measures like testing but more
importantly about taking preventive and
corrective measures. These preventive
and corrective measures are applicable
to the organizational, process and product
level as well. The QLM-model describes
all these types of measures. A preventive
measure on organizational level is to
achieve a level of trust and confidence
between customer (stakeholder) and sup-
plier. Because trust alone is not sufficient
measures at process level and product
level are needed, for example an incident
management process that is easy to use
by both partners or the use of coding
standards. Quality is not achieved by
just testing but also by good design and
development practices. Our book on the
QLM-model is therefore not just about
testing services but covers all aspects
of managing quality in outsourcing:
quality level management

Jeanne Hofmans and Erwin Pasmans are test consultants at Improve Quality Services
(http://improveqs.nl). Their book Quality Level Management: Managing Quality in
Outsourcing, will be presented at Eurostar 2012

Improve Quality Services BV

Phone +31 40 202 1803
info@improveqs.nl
www.improveqs.nl

Laan van Diepenvoorde 1
5582 LA Waalre

Amsterdamsestraatweg 55a
3744 MA Baarn

Testing with proven
methods and techniques

Structured testing Quality Level
Management

Agile

Managing quality in a
customer – supplier
relationship

Testing and teamwork in
innovative development
processes

S.E.A.L.*

Come and visit us
at Amsterdam RAI on booth nr 50 between 5-8 november:
www.eurostarconferences.com or contact us at www.rever.eu

* S.E.A.L. = Select, Extract, Anonymize, Load

The perfect solution to cut in your testing costs

1. CONFIGURATOR
define your test data environment 2. SELECTOR

select the test data you needselect the test data you need

4. GENERATOR
add extra data when neededadd extra data when needed

5. ANONYMIZERANONYMIZER
protect sensitive dataprotect sensitive data

6. COMPARATOR
view all differences
before and after test 3. EXTRACTOREXTRACTOR

based on your selection, S.E.A.L. based on your selection, S.E.A.L.
extracts a consistent data setextracts a consistent data set

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-improveqs
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-rever

Martin Mudge
suggests a new
metric which is
really a criterion

A more fundamental weakness of this
method is that severe defects can wreck
projects before production as well as
products after, and the earlier the defect is
found the harder the speculation becomes.
For example, suppose a review detects a
critical ambiguity in a requirements or
design document. If you want to, as testers
always should and will, you can argue that
left unfixed this would have caused
incorrect development which would then
propagate itself like wildfire until the
product was so riddled with defects that it
would be cheaper to start again than try to
repair it. On the other hand empirical
testers and developers will claim that they
would have found the defects the
ambiguity caused by other means a little
later with no great harm done. The truth is
no-one knows.

The cost of detection
It is much easier to calculate the cost of
finding the ambiguity. We can measure the
time spent conducting the review by people
whose cost-per-hour is known, thus
calculate the cost of each defect it
detected. That simple exercise will usually
provide a powerful argument for early
lifecycle testing and the production of the
documentation it requires.

However in this case things become more
complicated the later a defect is found,
because it is not obvious where the cost
lies. Suppose executing a test suite takes t
hours and detects 2 new severe regression
defects. The cost per defect is not
necessarily derivable from t/2 because that
does not account for the previous work
required to build and maintain the test
suite. It also raises a difficult question: if the
test suite detects no defects does that
mean it has no value? Clearly not: its value
comes from its potential to detect defects
should they exist. But its value is
diminished by its potential to miss defects.

by Martin Mudge

Put the crystal ball away

PT - October 2012 - professionaltester.com 24

Factory model testing

You find out whether more testing
was needed only after it’s done

Measuring the effectiveness of testing is
a favourite topic in PT. Good ways to do it
are desired for several reasons: to help
decide when to stop testing, to inform
process improvement, and to help sell or
justify testing to those who commission it.
The increasing trend to convert testing into
a service, discussed in detail in the last
issue (see http://professionaltester.com/
magazine/backissue/PT016), has made
the latter reason especially prominent.
Thinking about the information a consumer
of such a service needs to make decisions
about it led me to consider the cost of
detecting defects, a metric I could not find
mentioned anywhere.

The cost of nondetection
It is common to ask consumers of testing –
as a service or not – to consider the cost of
not detecting defects. In other words, we
take a known defect and try to predict what
might have been the business impact had
it entered production. In some cases this is
done quite easily. In others, it depends on
unknown factors, for example which user or
users would have been affected by it first
and how he/she/they would have reacted.

25PT - October 2012 - professionaltester.com

Factory model testing

detect defects. If that happens the cost, in
retrospect, could have been saved. Trying
to do that will be the natural instinct of
many to whom the question is put.

So I suggest another proposition format:
“would you be prepared to pay, and if so
how much, for detection of a defect of this
type, where the type is defined by you in
terms of the impact it could have on your
business?”. It seems to me that this is a
much easier question to answer and that,
from the point of view of a tester wanting to
test, the answer is more likely to be
positive. That's because the proposal is
about buying value, not being forced under
threat of disaster to accept cost.

The you-pay-as-we-detect model
The reason for choosing to use a shared
testing service, whether organizational or
external, should not be because one is
prepared to tolerate less effective or less
comprehensive testing. In fact I believe that
a testing service can and should surpass
the performance of the internal testing it
replaces. To me, the important selling point
of services is their flexibility. When
confidence in the product increases,
service consumption and therefore cost
can be reduced immediately. The opposite
is also true. The onus on management to
try and predict these unpredictable
fluctuations long in advance so as to avoid

expensive under- or over-resourcing is
removed. In short, using on-demand
services makes testing more agile.

The best factory models adjust
themselves in this way transparently. For
example, at BugFinders we charge per
defect found. That charge varies with the
type of defect, according to typing criteria
agreed with our customer beforehand: for
example, many customers distinguish
between “GUI” (presentational, eg
misspelled word or missing non-critical
image) and “functional” (user cannot
complete required business action)
defects. Our customer also specifies a
maximum spend. Obviously we want to
reach that, by detecting as many defects
as possible and prioritizing detection of
high-value defects. When the detection
rate is high, we allocate more testers
(who are also paid per defect detected) in
order to do that more quickly. When it
falls, we adjust the approaches and
techniques we apply in order to try and
increase it, according to our judgement
on how to maximize our revenue, which is
exactly the same thing as maximizing the
value, as defined by our customer, we
provide. The customer always receives
the best and most appropriate testing in
the current circumstances, at known
maximum cost, with no need to manage
or resource it

Not knowing whether or not they exist nor
what they might be, we cannot know what
is that potential. Wolfgang Platz, in this
issue of PT, recommends a compromise:
take the ratio of detected to missed defects
(both weighted by severity). That is
probably a fairer way to evaluate the
effectiveness of testing but, as Platz also
points out, that evaluation is only of testing
already done. Decision makers may
choose to use it as a guide, but hopefully
are aware that despite what macro-
historians may say, the recent past is in
no way a guide to the imminent future.

The value of detection
Because of these difficulties in
considering the cost of detecting a defect
as a metric and trying to measure it, it is
better to consider it a criterion to be
specified. Obviously the correct entity to
do that is business.

Many testers, including the editor of this
magazine, argue that testing to assure the
absence of defects is just as valuable as
detecting defects. I disagree, and share
Cem Kaner's view that “the primary
function of the test group is to find bugs,
and the primary work product of the
individual tester is the bug report”. The title
of the article in which he expresses this is
Don't Use Bug Counts to Measure Testers
(http://techwell.com/sites/default/files/articles/
SmzXDD2217filelistfilename1_0.pdf) and
doing that is certainly not my aim here. But
I do think that the value of testing to a
business is a simple function of the number
and severity of defects it finds. If analysts
and developers do so excellent a job that
there are few defects to find (extremely
unusual), that is not testing's fault: but we
should be realistic and accept that it does
make testing less imperative.

Typically testing makes a proposition to
business along the lines “this much risk
remains. Do you want to accept it, or
should we continue to attempt to reduce it
at this cost per day?”. This is a very tough
decision because risk is of the future.
Reducing risk does not mean detecting
defects. It may mean trying but failing to

Martin Mudge is the founder of BugFinders.com. His white paper How Much Do Your
Bugs Cost? expands on the concept of this article and is available free at
http://bugfinders.com/training/downloads/how-much-do-your-bugs-cost

Trending: testing

PT reads everything about testing on the web so you don’t have to.

For the latest thinking that matters on testing visit professionaltester.com

To tell us something else please email editor@professionaltester.com

Submit VM images with

incident reports The Windows VM

provided to me by the powers that be

takes about 19GB of storage. Not

small, but not unmanageably big. So

before I start testing (manual or

automated), I make a copy of it. When

I observe an anomaly, I immediately

suspend the VM and add the date,

time and perhaps a short note about

the defect to the filename of its image.

Then, depending on my judgement of

which is best, I either continue testing

in the clean copy (remembering to

make a copy of it again first) or make

a copy of the one I just suspended

and carry on working in that.

If development says it cannot

reproduce an incident, I provide it

with a copy of the image of the VM at

the time I observed it. The VM, once

running, provides all the configuration

and state information devops need.

They can even use the undo function

to discover my user actions prior to

the incident.

Could this method spell the end of

arguments about reproducibility of

incidents and therefore of

irreproducible incidents?

Difference between optimist

and pessimist The pessimist knows

all the facts

Why risk does not work

Imagine five people are at sea in a

lifeboat. It’s holed and sinking fast.

You are piloting a rescue helicopter

overhead. There is no chance of any

more help arriving in time. You have

only two options.

Option 1: use your winch to take three

of the people on board the helicopter.

It can’t fly with any more. The three

winched up will definitely be safe. The

two left in the lifeboat will definitely die.

Option 2: try to use the helicopter’s

downdraught to blow the boat to

shore. If you succeed all five people in

the lifeboat will definitely be safe, but

according to trusted statistics the

likelihood of the boat overturning is

exactly 0.5. If that happens, all five

people in the lifeboat will definitely die.

You can’t combine the options.

Option 2 requires flying at an angle

and is impossible with anyone on

board except the pilot. None of the

people in the boat can fly the

helicopter. You must choose either

option 1 or option 2.

Which option will you choose? Why?

PT - October 2012 - professionaltester.com 26

Difference between RAD

and agile In RAD, developers

make it up as they go along and

do whatever the hell they like.

Agile is subtly different:

developers do whatever the

hell they like and make it up

as they go along

Appalling failures caused

by IT suppliers Fujitsu has

reportedly (http://www.ft.com/cms/

s/0/0d1595d6-fb6f-11e1-b5d0-

00144feabdc0.html#axzz26AkAAH5D

you have to register to read it so

we suggest you don’t bother)

been blacklisted by the UK

Government at the behest of the

famously competent Francis

“jerrycan” Maude. Our question

is: why have all the other oligarchy

IT suppliers to UK Government

not been blacklisted?

Enjoy your extra time! It can be so easy to create your test automation solution.

Never mind all the stories you have heard about the nightmare
of test automation. Your test automation project does NOT
have to fail because you are short on people to develop and/
or maintain your test system, or the costs are exploding when
developing your test system, or you can not justify the mainte-
nance costs of your test environment to your management, or…

Testing Technologies has advised and supported many success-
ful projects on test automation. Take this one for example:
A small team of a Belgian operator for the radio communication
network managed to automate their challenging testing needs
in a relatively short time, right on schedule, right on budget.

But how do successful projects differ from failed ones?

The fi rst step is to consider some practical views. A test
automation project typically never starts on a green fi eld. In
most cases, there are already tools available that have reached
their end of life cycle, and/or there is a collection of different
test tools that have been developed in-house. Projects driven
by software developers usually come up with a pretty
enlarged tool landscape which is, however, lacking the
support of 'real' testing challenges. Overseeing basic features
(from a test perspective) makes it one day virtually impossible
to maintain or enhance the existing test tools any further.
Testing tools created in projects driven by test engineers
come up pretty well in respect of testing issues but show
shortcomings from a software design perspective.

Many businesses decide to purchase or license a ready to
use test tool. But even though test automation software
companies spend lots of engineering money to develop
optimal testing tools, they are usually only effi cient in the
focused domain, performing poorly when applied outside
the intended area. The only way out of this situation is to use

a test technology well designed by testers for testers with a
solid test system architecture designed by software developers
for software developers. To perfect this, get some commercial
tool and service support that is backed by a strong community
in your particular domain.

And the Belgian operator found just that!

Scouring the existing commercial tool market, they took
notice of Testing Technologies' TTworkbench, which had
already been applied in their particular domain. Its unique
features, especially how test progress is visualized and
reported, convinced them to give it a try. But no off-the-shell
tool support had been available for their particular problem.
Not yet! The extension capabilities of TTworkbench via
open and standardized APIs enable the implementation of
additional functionalities. Testing Technologies provided all
missing features as an off-the-shelf solution just in time,
so the operator's testers could immediately start to create
their specifi c test environment. To implement the same
functionality would have been an alternative option.

As a result, the Belgian service provider not only deployed a
highly customized but off-the-shelf test environment, also
all their investments in building this particular test infra-
structure can be reused in the future too, as the integrated
TTworkbench is based on an internationally standardized
test technology called TTCN-3. This technology was created
by testers for testers in an international, technology-
independent environment, and was implemented by software
developers for software developers.

Don't overlook your amazing ops through test automation!
Read the full story at www.testingtech.com/testdevops
and spare further nightmares with our support.

Amazing Ops through
Test Automation

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-testingtech
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-testingtech

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt17-ranorex

