
E s s e n t i a l f o r s o f t w a r e t e s t e r s
TE TERSUBSCRIBE

It’s FREE
for testers

October 2014 v2.0 number 29£ 4 ¤ 5/

Including articles by:
Gregory Solovey
Alcatel-Lucent
Llyr Jones
Grid-Tools
Staffan Iverstam
QualityMinds
Reshama Joshi
L&T Infotech
Stefan Patry
NORIZZK.COM
Sakis Ladopoulos
INTRASOFT International

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-ranorex

3PT - October 2014 - professionaltester.com

From the editor

The revolution will be in high definition
Imagine a tester is given a test basis
and applies a test technique to it to
design and specify tests.

Imagine another tester, who has no
contact with the first tester, is given the
same test basis and applies the same
technique and specifies exactly the
same tests.

You have just imagined the future of
test techniques, therefore of testing,
therefore of software development.

It will be achieved by better, that
is more rigorous, definition of
test techniques. Taking the most
fundamental of them, equivalence
partitioning, as an example: telling us
to choose an arbitrary input within a
partition is not sufficient. Tell us exactly
how to choose for any partition. More
difficultly, tell us exactly how to partition
input and output of any test object.

Similar genericization can be achieved
for all the test techniques currently
known and for those yet to be known
but proposed or imagined as by
contributors to this issue. Its many
positive effects will include enabling
development of perfect automation
of test design and truly comparable
measurement of test effectiveness.

This hard but essential and long-
overdue work will eventually make
avoidable defects a thing of the past,
to be remembered and regretted but
never repeated.

The initial goal is that every defect
detectable by known techniques is
detected at the first opportunity. With
that achieved actual innovation will,
at last, be able to start.

Edward Bishop
Editor

	 IN THIS ISSUE
Where next for test techniques?

	 4	 From test techniques to test methods
Gregory Solovey tells us what to do and we love it

14	Keep it not real
The mathematics of post-agile development, with Llyr Jones

17	Change for changeʼs sake
Staffan Iverstam’s practical tips on making testers more innovative

To the editor
21	What really burns

Reader JCD’s view on ISO 29119

Test strategy
22	Not so big

Reshama Joshi’s report of a brilliantly successful big data test project

Test management
24	Really risky

Stefan Patry presents NoRizzk.com

28	Help the afflicted
Sakis Ladopolous’ advice on negotiating for testing

	 Visit professionaltester.com for the latest news and commentary

Contact

Editor
Edward Bishop

editor@professionaltester.com

Managing Director
Niels Valkering

ops@professionaltester.com

Art Director
Christiaan van Heest

art@professionaltester.com

Sales
Rikkert van Erp

advertise@professionaltester.com

Publisher
Jerome H. Mol

publisher@professionaltester.com

Subscriptions
subscribe@professionaltester.com

Contributors to this issue
Gregory Solovey

Llyr Jones
Staffan Iverstam
Reshama Joshi

Stefan Patry
Sakis Ladopolous

Professional Tester is published
by Professional Tester Inc

We aim to promote editorial independence
and free debate: views expressed by contri-
butors are not necessarily those of the editor
nor of the proprietors.
© Professional Tester Inc 2014
All rights reserved. No part of this publication
may be reproduced in any form without prior
written permission. ‘Professional Tester’ is a
trademark of Professional Tester Inc.

4 PT - October 2014 - professionaltester.com

Where next for test techniques?

Some say test design should be
considered an art or craft. However here
I will try to present it as a systematic pro-
cess by showing that all functional tests
needed for any software product release
can be built in a matter of days, based on
architecture and requirements documents.

Applying test techniques to the com-
plexity to which they are defined, or
too exhaustively, in a quest to be able

to detect exotic and unlikely defects is
impractical. These defects when they
do occur are usually the result of poor
coding practice and not testable at all.
Basic application of the well-known
techniques to define simple test design
methods is sufficient to detect almost all
implementation (that is, coding) defects
which could occur.

Even products containing millions of lines
of code need not be daunting, because
the test effort is not proportional to the
size of the code, but to the size of its
independent components. The layered
architecture of modern software, with
lower layers providing services for higher
ones through APIs, follows that paradigm.

For example, an embedded system
consists of drivers, OS, middleware and
applications. Each of these comprises
independent services and features. Each
software release is described by a set of
incremental requirements and architec-
ture documents. Before development
starts, these requirements are refined
to sufficient detail. Now test planning
and test generation start. Presenting
each requirement as a software model
(an expression, an algorithm, a state
machine, etc) and using a known method
to build test cases should be a straight-
forward, routine process.

Putting theory into practice
Theoretical test design techniques take
into account all possible levels of object
complexity, for instance the presence
of multiple defects that can mask single
ones, lack of output interfaces, etc. In
addition, they are intended to provide
a quick and exhaustive test design
algorithm for objects with thousands of
elements. In most real-world circum-
stances, testers do not need to resort to
such “muscle” methods.

From test techniques
to test methods
by Gregory Solovey

PT proudly presents
Gregory Solovey’s
hierarchical, step-
by-step test design
methodology

Good enough test design in very little time

5PT - October 2014 - professionaltester.com

Where next for test techniques?

First, the requirements are represented
by much smaller scale models, contain-
ing less than one hundred elements.
Second, a developer responsible for the
requirements’ implementation can easily
improve insufficient object controllabil-
ity and observability by, for example,
adding a “show” function or a CLI com-
mand that works directly with the API.

Object models
A requirement is usually written in
business terms, which is not the best
format for writing test cases, because
it does not include formal definitions
of possible errors. Formal models
(such as condition, algorithm, state
machine, etc) on the other hand use
formal definitions of error classes and
test design methods that guarantee
defect coverage. The tester should
ensure that each requirement is
presented as a formal model prior to
beginning test design.

Defect models
Test cases have to identify all the imple-
mentation errors for the formal models.

This article will deal with the defect model
sometimes called ‘symbol swap’ where,
for example, a variable name is inadvert-
ently replaced with a constant or another
variable of the same type. This cannot be
detected by a syntax analyzer.

Defects other than symbol swap, for
example the presence of incorrect
arithmetic, relational or logical operators,
are expected to show up as symbol swap
elsewhere in the code.

Primary and derived test
design methods
I consider the primary methods to be
boundary value analysis (selecting test
cases at the edges of equivalence parti-
tions) and path sensitization (identifying
logical paths from the defect to the output

that will ensure the effect of the defect if
present will be propagated to the output).
These two methods are the basis for
defining test design methods for arithme-
tic, relational and conditional expressions,
that is atomic models, and can be
combined to define further test design
methods for compound models such as
algorithms, state machines, instruction
sets and syntaxes (see figure 1).

Arithmetic expressions
An arithmetic expression may consist of
numeric constants and variables and arith-
metic operators and can be evaluated. If A
and B are arithmetic expressions, then so
are A + B, A ÷ B etc.

Because arithmetic expressions can
evaluate to many results (for non-binary
values) a small number of test cases can
detect all possible defects in them. Two
cases are needed to verify an arithmetic
expression that does not include a division

• Boundary value analysis
• Path sensitization

Primary test
design methods

• Arithmetic expression
• Relational expression
• Logical expression

Test design methods
for atomic models

• Algorithm
• State machine
• Instruction set
• Syntax

Test design methods
for compound models

Figure 1: derive schema of test design methods

6 PT - October 2014 - professionaltester.com

Where next for test techniques?

operator. Each variable in an arithmetic
expression needs to be presented by two
different values in two test cases to make
sure that it was not accidentally replaced
by a constant or another variable. For
each division operator an additional test
case is needed to test the outcome when
division by zero would occur.

For example, the arithmetic expression
a + 45 ÷ (b - c) requires three test cases
as shown in figure 2.

Relational expressions
These consist of arithmetic expres-
sions separated by relational
operators. If A and B are arithmetic
expressions then A > B, A == B, A <=B
etc are relational expressions.

The branch coverage approach,
where each relational operator can be
true or false, obviously leads to two
test cases per operator: for example,

for the expression a > 4, test cases
a = 3 and a = 5 would be derived.
However this misses possible defects
such as a >= 4 instead of a > 4. For
this reason BVA should be used to
generate three test cases, including
one on the boundary, as shown for
this example in figure 3.

Logical expressions
These consist of logical constants and
variables. Relational expressions are a
subset of logical expressions. If A is a
logical expression then so is NOT A. If
A and B are logical expressions then so
are A AND B, A OR B etc.

Experience has shown that using Victor
Danilov’s Graph model (see Identifying
test for a nondirected graph (sic)
by V. V. Danilov and B. I. Filimonov,
Avtomat. i Telemekh., 1973, no 7,
pp157–161) simplifies the test case
creation greatly.

First, remove all global logical negations
using de Morgan’s Laws:

•	 NOT (A AND B) is the same as (NOT A)
OR NOT B

•	 NOT (A OR B) is the same as (NOT A)
AND (NOT B)

Now represent each variable as an edge
(line) and, starting from the most deeply
embedded brackets, represent each OR
by parallel connection of edges and each
AND by sequential connection of edges.
For example, F = ((b OR c) and d) is
represented by the graph in figure 4.

Now consider the value of each of the
Boolean variables. For the case where a
Boolean variable is FALSE, remove that
edge from the graph. If after removing all
FALSE edges a path from the start to the
end point still exists, then F = TRUE.

Let’s call any set of Boolean variables
that, when their value is TRUE, form a
pathway from SP to EP, a “path”. For
example the path cd means c = TRUE and
d = TRUE. Another path is bd.

A ‘cut’ is the opposite of a path, that is a
set of variables which, if all of them are
FALSE, makes F = FALSE, is there is no
path. For example, cb is a cut because if c
= FALSE and b = FALSE then F = FALSE.
Another cut is d.

Identify the minimum set of paths and
cuts that cover all graph edges. Now
write one test case for every path, by
assigning TRUE to every edge (variable)
that is on it and FALSE to all the others.
Inversely, write one test case for every cut
by assigning FALSE to all the variables it
includes and TRUE to all it does not.

As a more realistic example, consider the
following functional requirement:

One LED below each T1/E1 port indicates
one of the following: (a dial feature card
(DFC) is up AND (an alarm is received
on the associated T1/E1 port, indicat-
ing ‘loss of alignment (LOA)’ OR ‘loss of

a b c output
10 30 50 7.75
-30 21 14 -23.5
5 6 6 Error message

Figure 2: test cases for a + 45 ÷ (b - c)

a output
3 F
4 F
5 T

Figure 3: test cases for a > 4

c

a
EPSP

b

Figure 4: Danilov graph of F=((b or c) AND d)

7PT - October 2014 - professionaltester.com

Where next for test techniques?

SP

LOA

LOF

RRED

RAIS LOS

RFERF

DFC
EP

Figure 5: Danilov graph of DFC AND (LOA OR LOF OR (RAIS AND LOS) OR (RRED AND RFERF))

DFC LOA LOF RAIS LOS RRED RFERF output
path 1 T T F F F F F T
path 2 T F T F F F F T
path 3 T F F T T F F T
path 4 T F F F F T T T
cut 1 F T T T T T T F
cut 2 T F F F T F T F
cut 3 T F F T F T F F

Figure 6: test cases for DFC AND (LOA OR LOF OR (RAIS AND LOS) OR (RRED AND RFERF))

A>5 OR (B>0 AND B<9)

D=D/A

Figure 7: flowchart of IF (A>5 OR (B > 0 AND B < 9)) THEN (D = D ÷ A)

8 PT - October 2014 - professionaltester.com

Where next for test techniques?

Figure 8: Danilov graph of X OR (Y AND Z)

X Y Z output
path 1 T F F T
path 2 F T T T
cut 1 F F T F
cut 2 F T F F

Figure 9: test cases for X OR (Y AND Z)

X Y Z A B output
1 path 1 F F F 4 0 F
2 path 1 F F F 5 0 F
3 path 1 T F F 6 0 T
4 path 2 F F T 4 -1 F
5 path 2 F F T 4 0 F
6 path 2 F T T 4 1 T
7 path 2 F T T 4 8 T
8 path 2 F T F 4 9 F
9 path 2 F T F 4 10 F
10 path 2 F T F 0 8 ERROR

cut 1
cut 2

Figure 10: test cases for A>5 OR (B > 0 AND B < 9))

9PT - October 2014 - professionaltester.com

Where next for test techniques?

multi-frame (LOF)’ at the local or remote
node OR received ‘Alarm Indication Signal
(RAIS)’ AND ‘Loss Of Signal (LOS)’ OR
‘Receive RED Alarm (RRED)’ AND ‘Far-
End Received Failure (RFERF)’))

This can be written as the logical expres-
sion DFC AND (LOA OR LOF OR (RAIS
AND LOS) OR (RRED AND RFERF))
and graphed as shown in figure 5.
Compare the seven test cases gener-
ated (figure 6) with the 128 which would
be generated by simple permutation of
all the Boolean variables.

Algorithms
An algorithm is a set of functional and
conditional blocks and connections among
them. Each functional block contains arith-
metic expressions and each conditional
block contains logical expressions.

As we have already seen, most structural
test techniques (including statement,
branch, path etc coverage) do not
guarantee detection of all possible imple-
mentation defects. That can be achieved
by combining the two test design methods
described above: first, BVA to create test

cases for each expression in the algo-
rithm, then path sensitization to ensure
that the effect of failure of any of those
cases is propagated to the output.

Consider the simple algorithm IF (A>5 OR
(B > 0 AND B < 9)) THEN (D = D ÷ A),
shown as a flowchart in figure 7.

The three relational expressions, A > 5,
B > 0 and B < 9, are encapsulated into a
logical expression. Let’s name them X, Y
and Z. Each relational expression requires
three test cases:

A B D-input D-output
1 4 0 6 6
2 5 0 6 6
3 6 0 6 1
4 4 -1 6 6
5 4 0 6 6
6 4 1 8 2
7 4 8 6 1.5
8 4 9 6 6
9 4 10 6 6
10 0 8 6 ERROR

Figure 11: test cases for IF (A>5 OR (B > 0 AND B < 9)) THEN (D = D ÷ A)

1

A or B

C or D

C or D or I
E or F or H

E or F

G

J

2

3

4 5

Figure 12: state transition diagram

10 PT - October 2014 - professionaltester.com

Where next for test techniques?

A B C D E F G H I J transitions
1 T F 1
2 F T 1
3 T T 1 2
4 T T F T 1 2 2
5 T T T F 1 2 2
6 T T F T 1 2 5
7 T T T F 1 2 5
8 T T F F F F F 1 2 2
9 T T T 1 2 3
10 T T T F 1 2 3 3
11 T T T F 1 2 3 3
12 T T F F T T 1 2 3 3
13 T T F T T F 1 2 3 5
14 T T T F T F 1 2 3 5
15 T T F F T T 1 2 3 5
16 T T F F T F F 1 2 3 3
17 T T T T 1 2 3 4

Figure 13: test cases for STD in figure 12

command output
1 createMailbox name, max message size, max messages boxID, ERR
2 findMailbox name boxID / NO, ERR
3 getMsgBuffer message size bufID, ERR
4 writeBuffer bufID, size of data, data to write OK, ERR
5 sendMsg boxID bufID OK, ERR
6 getBuff boxID message
7 releaseBuff bufID OK, ERR

Figure 14: instruction set for a messaging service

command output
1 createMailbox createMailbox
2 findMailbox createMailbox findMailbox
3 getMsgBuffer getMsgBuffer
4 writeBuffer getMsgBuffer writeBuffer
5 sendMsg createMailbox getMsgBuffer writeBuffer sendMsg
6 getBuff createMailbox getMsgBuffer writeBuffer sendMsg getBuffer
7 releaseBuff createMailbox getMsgBuffer writeBuffer sendMsg getBuffer releaseBuff

Figure 15: minimum set of sequences for instruction set in figure 14

11PT - October 2014 - professionaltester.com

Where next for test techniques?

•	 X (that is, A > 5) requires test cases A
= 4; A = 5; A = 6

•	 Y (B > 0) requires test cases B=-1;
B=0; B=1

•	 Z (B < 9) requires test cases B=8;
B=9; B=10

Substituting these new symbols for the
relational expressions, the logical expres-
sion they form can be written as X OR (Y
AND Z) and represented by the graph in
figure 8, analysis of which gives four test
cases (figure 9).

Now consider the arithmetic expression in
the algorithm, D ÷ A. it requires three test
cases such as: D = 6; A = A1. D = 7; A =
A2 and D = 7; A = 0 (where A1 ≠ A2).

All these test cases, for the relational
expressions and the arithmetic expres-
sion, are now combined and propagated
to the output (figure 10). For example,
path 1 makes the output depend on the
value of X and therefore enables us to
verify the relational expression A > 5; path
2 makes the output depend on the values
of Y and Z, enabling verification of B > 0
and B < 9. Notice that, in this example,
there is no need for specific test cases to
deal with the cuts: cut 1 is achieved by
test case 4 (also 5) and cut 2 by test case
8 (also 9).

Furthermore, test cases 3 and 6 are
equivalent to two of the three test cases
for D ÷ A. We need only add test case

10, for the division by zero case. The
complete, fully-specified set of test cases
is shown in figure 11.

So far we have not considered loops
in code execution. However this
is easily achieved by a standard
structural technique: for the logical
expression which controls the number
of iterations, based on the boundary
conditions, design tests that cause
the code within the potential loop to
be executed zero times, once, the
maximum number of times, and that
maximum plus one.

State machines
A state machine is represented by a set
of states it can be in and a set of input
conditions that trigger those transitions.

The occurrence of a transition may also
generate outputs: in fact for testing this
is required, since otherwise it may be
very difficult to identify with certainty
the current state. Developers should be
able to implement a function to output
the identity of every state as the transi-
tion to it occurs.

Transitions are triggered by events,
which are simple Boolean inputs. So,
transitions are logical expressions and
test design for them is simple using
the method already defined. Paths
comprised of a series of transitions
are subject to the same rules as a
Danilov graph and can be subjected
to path sensitization in a similar way.

Figure 12 shows a state transition diagram
for an embedded system. The capital
letters denote inputs, that is events, that
should cause the transitions. Figure 13
shows the 17 test cases required, in
conjunction with the test cases for each of
the transitions itself, to detect all possible
single defects in the implementation of the
state machine. This is not the minimum set
to do that, because it has been expanded
and arranged in order that each test starts
from the initial state, 1. This easy, common
practice helps test execution by allowing it
to continue even when a defect is found,
by continuing to execute tests not affected
by the defect, including those that need to
start from states that are not reached due
to the defect, and helps incident resolution
by keeping the result of each test inde-
pendent from that of others.

Instruction sets
An instruction set is a collection of com-
mands each specified by its name, its input
parameters, and a specification of how
its output results should be derived from
its input parameters. Figure 14 shows an
example, for a messaging service.

For a command to be testable, it must
be possible to initiate its execution,
and observe its outputs, using an
external interface.

For each command create a unique
‘macro-instruction’. A macro-instruction
consists of commands that allow to initiate
a test stimulus from the external interface
and to verify the result of its execution.

rule.test# test
1.1 Verify that an error message is output if element ucSet does not contain element uc
1.2 Verify that one element uc can be processed
1.3 Verify that two elements uc can be processed
2.1 Verify that an error message is output if element ucSet does not contain attribute name
2.2 Verify that an error message is output if element ucSet does not contain attribute startTime
2.3 Verify that attribute ‘startTime’ is in format ‘YYYY-MM-DD HH:MM:SS’
2.4 Verify that attribute name cannot be presented more than once in an element uc

Figure 16: tests to detect defects in implementation of syntax rules for an XML file

12 PT - October 2014 - professionaltester.com

Where next for test techniques?

The macro-instructions can be ordered
based on the nested relationship to assist
with incident resolution (figure 15).

The tests themselves are then
designed using the methods already
described, selected according to the
content of the model of the command
under test.

Syntaxes
A syntax is a set of rules that describes
the various elements of objects and
what are the correct structures in
which they can be arranged. Many of
the rules are defined based upon on
the definition of preceding rules.

Test design should start from the
base (independent) rules and con-
tinue following the order of rules. BVA
is applied to each element, then the
other methods to each of the various
expressions encountered.

Consider the following fragment of the
syntax definition for an XML file:

1	The ‘ucSet’ element contains one or
more non-empty closed elements ‘uc’

2	The ‘uc’ element contains the following
mandatory attributes: ‘name’, ‘start-
Time’, and a non-empty closed element
‘tcSet’

3	The ‘tcSet’ element contains one or
more non-empty closed elements ‘tc’

4	The ‘tc’ element contains the following
mandatory attributes: ‘name’, ‘status’,
‘executionTime’

Figure 16 shows the test cases required
to detect implementation defects for
rules 1 and 2. Only defects that could
not be detected by an automated XML
syntax checker should be covered by
test cases

Gregory Solovey PhD is a distinguished member of technical staff at Alcatel-
Lucent. He is currently leading the development effort of a test framework for
continuous integration

E s s e n t i a l f o r s o f t w a r e t e s t e r sTE TERSUBSCRIBE

It’s FREE
for testers

February 2013 v2.0 number 19
£ 4 ¤ 5/

professionaltester.com

If IT quality matters to you,
you need Professional Tester, the
original and best journal for
software testers.

Read the latest testing news
and articles and subscribe
to the digital magazine free
at professionaltester.com

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-housead
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-housead

14 PT - October 2014 - professionaltester.com

Where next for test techniques?

Has agile fallen into the same trap as
did sequential development method-
ologies, by itself becoming too rigid and
prescriptive, preventing rather than help-
ing teams to work the way that suits them
and their current project?

Sometimes strict adherence to whatever
variation of agile has been adopted does
not seem the best approach but teams
are forced to use it anyway. The “post-
agile” idea suggests that the pendulum

has swung too far and its oscillation
needs to be dampened: that a new
‘middle way’ is needed.

So what will be the important techniques
in post-agile testing? I have argued, in PT
and elsewhere, for test design techniques
based on flowcharting: that is, using
mathematical algorithms to work out the
optimal set of test cases and guarantee
coverage. Applying flowcharting also
shows that not all programs are testable.
More recently, I have encountered people
who cling to the idea that non-testable
programs are sometimes inevitable, even
acceptable. Also, I was shocked to read
in the conclusion of Gregory Chaitin’s
book Meta Math!: The Quest for Omega
(Vintage, 2006, ISBN 9781400077977)
his view that ‘Experimentation is the only
way to “prove” that software is correct.
Traditional mathematical proofs are only
possible in toy worlds, not in the real
world. The real world is too complicated’.

In this article I will argue that only testable
programs should be written.

Maths and meta-maths
Euclid’s fifth postulate, known as the
parallel postulate, states that any two
lines either intersect or are parallel
and is an example of what modern
mathematics calls an axiom: something
accepted as true without the need to
prove it. More than 2,000 years after
Euclid, mathematicians proved that the
parallel postulate could not be proven
from Euclid’s other four postulates so
they tried removing it and considering
them without it. That led to the discovery
of hyperbolic geometry, the cornerstone
of Einstein’s relativity theories.

Later mathematicians started to try to
develop rigid frameworks of axioms so
that all of mathematics could be put on

Keep it not real
by Llyr Jones

Llyr Jones explains
his vision for the post-
agile world

Enforcing testability as a test technique

15PT - October 2014 - professionaltester.com

Where next for test techniques?

firm logical ground. In the same way,
these axiomatic systems were then ana-
lyzed to see what happened when axioms
were added and removed. This field is the
meta-mathematics referred to in the title of
Chaitin’s book. In 1931, the first provably
unprovable statement, Hilbert’s continuum
hypothesis, was discovered, rocking
mathematical philosophy to its core.

More work was done to figure out the
extent of the problem. This did not go
well: Kurt Gödel’s two incompleteness
theorems, published in 1931, stated
that no matter what system of arithmetic
is used, it is always possible to find a
problem that is unprovable.

The parallel (no pun intended) between
logical systems and computing systems
is obvious. Here we have a logical
framework for solving mathematical
problems, and they have been shown
to be incomplete. Similarly, we have a
logical framework (the operators in the
instruction set of a CPU) for computing.
The question arises: can we prove that
any program is testable?

Unfortunately, the answer, in the
abstract, is no. Working at around
the same time as Gödel, Alan Turing
posed his halting problem which asks
whether it is possible to prove that,
assuming infinite infrastructure and
resources to support its execution, a
program will eventually terminate. In
general, it is not. Even worse, it turned
out that this could not be proven for
most programs. Chaitin finally joined
the two problems together, showing that
Gödel and Turing’s work are equivalent.
Furthermore, Turing’s work highlights
important equivalence between the
provability of mathematical problems
and the testability of programs.

Defining testability
From this brief account of the spec-
tacular failure of logical systems in
mathematics, one could be excused for
believing that there’s no point to them. If
logical systems cannot prove the major-
ity of things, then why bother?

The same question was asked by the
early proponents of agile when they
exposed the pitfalls of the V model but
then, unfortunately, simply replaced
one set of problems with another.
Mathematics never made this mistake
because it simply got on with the
problems that could be solved. That
is why I do not share Chaitin’s doom-
and-gloom prophecy for testing. One
must bear in mind that there are still
infinitely many problems that can be
solved by logical systems! There are
more problems which cannot, but that
is no reason not to use logical systems
where they work.

Any program can be written with the
basic constructs of a programming
language: statements, arithmetic opera-
tors, conditions (that is, if-then-else or
case constructs) and loops. Similarly,
mathematics is founded on a set of
axioms or primitives that define what
is meant by a set and what operations
can be done on a set, for example
Zermelo–Fraenkel set theory with the
axiom of choice. ZFC cannot prove its
own consistency, but that does not stop
it being used by most as the foundation
of the whole of mathematics.

Similarly in testing, the trick is in realizing
that, if one restricts scope to programs
that can be provably testable, the problem
goes away! This is where flowcharting
comes in. The structure of a flowchart
depicts the four basic constructs. If a pro-
gram cannot be flowcharted, it must use
something other than those and as such
may not be testable.

As Gregory Solovey also points out in
this issue of PT, our notion of testability
must take observability into account.
To be detectable, all the possible logic
defects must be manifested at output: the
process of making them so can be called
path sensitization.

We also need to deal with the
halting problem.

So we have our definition:

A program is testable if and only if its
Turing machine representation can be
flowcharted, is deterministic and is always-
halting, and all possible faults can be
sensitized to output.

I am working on proving this and if
successful will share the proof with PT
readers. In the meantime however I am
convinced, intuitively, it is correct. As
I have shown in previous PT articles,
all possible use cases for a graph can
be computed, and techniques such as
functional equivalence used to reduce
the number of test cases. Note also that
every deterministic, always-halting Turing
machine has a state-diagram represen-
tation which is functionally equivalent to
a flowchart.

Enforcing these criteria during soft-
ware design means we can develop
any software possible, yet stay within
Chaitin’s toy world, avoiding the real
world and its uncertainty. Everything
we develop will be entirely testable!

It works even for multi-threaded
programs. The difference is that
multiple states exist concurrently (that
is, threads change state independently
of one another), causing difficulty at
the join points where threads interact:
this is where race conditions and
locking issues are manifested. But if
each thread is always-halting, then the
compound program is also always-
halting. So if the program is testable
then it always halts and will never enter
an infinite loop due to threads locking
each other out!

Agile doesn’t work, but being
agile might
I began this article by bemoaning the fact
that agile has become rigid, then went
on to advocate a one-size-fits-all solu-
tion to the problem of software testability.
This may seem contradictory, but can be
explained by considering technological
and human factors separately. The tech-
nological factors are less complex than the
human ones and are, for now, restricted
by the technology platforms on which they

Where next for test techniques?

are employed. The nature of computer
programs – their composition from, only,
the four fundamental constructs – will not
change in the foreseeable future.

Human factors on the other hand always
change, and it is a fundamental truth
that the more complex a problem is,
the greater the number of solutions it
requires. Therefore the only chance
of achieving agility is to be capable of
employing many different tools includ-
ing, where needed, the ones agile has
recently been trying to throw away.

I suggest therefore that development
philosophy – in the sense of choosing
development methodologies – should
be focused on human factors. The tech-
nological factors are dealt with by the
notion of testability I have described.
I believe it can work because it
has worked for mathematics. Many
people hope software development
will become mature by learning from
older disciplines such as engineering
and manufacturing. Mathematics – at
least 2,500 years old – has something
fundamental to teach us too

Frequent PT contributor Llyr Jones is a senior developer at Grid-Tools
(http://grid-tools.com)

Testing and automation, agility, tools, requirements, process
improvement, embedded systems and more
Key subject 2015: Software and Systems Quality in
Distributed and Mobile Environments

More than 50 lectures and workshops

The leading Conference on Software Quality,
Requirements, Testing and Agility

20th – 22nd January 2015
Hotel Savoyen, Vienna

BUYONLINENOW

 www.software-quality-days.com/shop
Program and tickets online

Keynotes:

Rex Black

Dr. Gernot Starke

Dr. Armin Wolf

Skynet Has Arrived
Will Ubiquitous Connectivity Give

Us Convenience or the „Terminator”?

Software ändern – aber richtig
Worauf es bei Evolution, Wartung und

Änderung von Software wirklich ankommt.

Waren die Medien früher besser?
Warum ist Qualität im Journalismus

wichtig und worunter leidet sie?

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-sqd
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-sqd

17PT - October 2014 - professionaltester.com

Where next for test techniques?

Test improvement has always
been a favourite PT topic. To
many people, the term is simply
short for ‘test process improvement’
which can be summed up roughly in
four steps:

1	Analyse the present situation

2	Decide on a few areas to improve

3	Change the way you work in
those areas

4	Go to 1.

In TPI this usually involves trying to
move closer to the way of working your
chosen model or standard recommends,
which may require anything from a small
tweak (better) to major reorganization or
even policy change. Either may be dif-
ficult because the models and standards
available tend to be too open to interpre-
tation, are not necessarily suitable for
your situation and are not necessarily
that good anyway.

In order to get new ideas you need to think
outside the box. TPI models and stand-
ards can easily keep your improvements
inside the box.

So how can the test organization invent
new ideas aimed at its specific needs
and aims – that is, new test techniques
– that are not only bad copies of stand-
ards or models? To avoid confusion
between terms, I prefer to call initiatives
to make that happen, and the adoption
and integration of the new ideas that
emerge test innovation.

My own work, as a tester closely
involved with development, requires
a constant stream of new ideas and
solutions, especially for test case
and test data creation. That has led
me to become interested in other
organizations that seem successful
at innovation, test and otherwise: for
example Samsung, Gore-Tex, Toyota
and, especially, Google and its manage-
ment model as described by Annika
Steiber in her book Googlemodellen
(Verket för innovationssystem,ISBN
9789187537127, in Swedish). I am
not saying these are necessarily good

Change for change’s sake
by Staffan Iverstam

Staffan Iverstam
explains how to stop
novelty wearing off

Generating and implementing Ideas
for innovations

18 PT - October 2014 - professionaltester.com

Where next for test techniques?

examples of how to develop, operate or
test, but of how to innovate.

In this article I present some practical
ideas I hope readers will want to try to
change their processes in order to drive
and encourage innovation, leading in turn
to larger, continuing beneficial change
rather than just process polishing. I
believe this is how the test techniques of
the future will be invented.

The innovative organization
Let us start at high level. How did Google
become so innovative? It was not an
accident. Its management model was
developed from its beginning with the
focus on creating an innovative company:
not only hiring creators and innovators,
but creating a culture for creative and
innovative work, including expectation of
continuous improvement, generosity and
openness between colleagues. The role
of managers is to guide and act as role
models, allowing their staff to make deci-
sions themselves. Individuals are asked
to spend only 70% of their time working
for the business: 20% may be spent on
personal projects related in some, possibly
vague, way to the business and 10% is
for personal projects that have, as far as
anyone knows at the time, nothing to do
with Google at all.

The innovative test organization
A lot of emphasis is placed on efficiency.
Consider the number of users, the
amount of dependency in the code-
base and the rate of change achieved.
Examples of how include:

•	 early adoption of continuous delivery

•	 making clear that quality is “owned”
by developers and the focus
of testing is to help developers
achieve quality

•	 maximizing test automation,
meaning that most testers are
also good programmers

•	 terms such as unit, integration and
system, which suggest (arguably)

sequential phases are not used.
Instead, testing is referred to as either
small, medium or large. The implica-
tion for the very concept of software
lifecycles is clear.

Sometimes Google invents: often it adopts
early: sometimes it is the only adopter.
What is important is it has moved quickly
to using, not just talking about, methods
and tools that are fit for its needs. And
it has never stopped, but continues to
pursue new ones and so improves faster
and faster.

The innovative test manager
The contexts of modern testing work
are very varied. Every tester knows how
radically different it is to test a new-build
versus an existing product. Real-time
integrations, external services, multiple
platforms and very many other factors
all change the game frequently too. It’s
vital to realise that the possibilities for
innovation – where and how – are just
as varied. To be useful an idea does not
need to be generic or to relate only to the
test process. Even if it seems to be only
for a specific, obscure or unusual context,
it may when analysed and developed
prove to be important in other, or even all,
situations. This is especially true when the
aim is to improve how the test process
interfaces with another activity, by chang-
ing either or both.

In the same way, it must be easy for
everyone involved to innovate for testing:
not just testers but the developers, clients
and specialists with whom they work. All
ideas must be captured for development
and potential implementation. It must be
remembered also to continue to manage
ideas which it has been decided not to
implement at this time. They will be the
foundation for more ideas.

The innovative tester
One of the many marvellous things about
the human brain is, I think, its ability to
autopilot. We do many things, having
learned to do them, without thinking about
them much or at all. In most of life that
is a good thing, but its effect on our work

as testers is not good. Being used to one
way of logging into an application tends to
make us forget that there are other ways.
Long experience of writing test plans
can make your plans too narrow; being
accustomed to dealing with developers
can reduce your effectiveness at challeng-
ing them; and so on.

Even worse, the autopilot brain is bril-
liant at looking for similarities and finding
patterns. This is good in that it allows us to
use earlier experience to solve new prob-
lems, but bad in that it tends to stop us
finding new ways to solve problems new
and old. Faced with a new test challenge,
we may intend to find the perfect solution,
but the chances are we will just use the
one we usually do.

Being aware of these self behaviours is
the first step to becoming more innova-
tive. The second is to make a deliberate
effort to break them, to force your brain to
think new.

Self-consciousness is not always
pleasant: trying the following creativity
techniques might make you feel silly. But
please try them anyway: no idea is silly if
you use it and it works.

Random entry
This involves imagining that the thing –
entity or activity – you are thinking about is
something else entirely, then considering
what that would make diffierent.

For example, suppose you want to help
people better to read your test plan.
Pretend it is not a test plan but something
else, a random entry. Let’s say an aero-
plane! The information in the plane would
be like passengers and the potential read-
ers would be like destinations. But some
destinations would be more important and
popular than others, and some might not
even have a runway big enough for your
plane. So maybe you need more than one
plane of different sizes? Or maybe you
can drop some passengers by parachute,
or have them use rail or road links from
some large destinations to others? Now
go back to the test plan. What might these

19PT - October 2014 - professionaltester.com

Where next for test techniques?

ideas mean for how to create and com-
municate it?

Challenge and alternatives
Take a fact you believe to be true, or a
thing you believe to be good, and con-
sider what you would do if it were a lie,
or absolutely terrible. For example, if you
are having trouble implementing a test
because of the test data it needs, think
“suppose this test is terrible, will never
run, has no potential to detect defects
and is not worth this trouble. And yet I
still have to deliver the assurance this
test intends to. How can I do that?”.

The answer can be reached by using a
mind map, writing down the alternatives
in branches. Include good as well as bad
alternatives: do not let self-criticism stop
you from reaching potentially good out-
comes. Now let each alternative expand
into more branches. You will find many
possible ways of implementing the test.

It’s important not to fall into the trap of
using this technique to attack things of
which you are actually suspicious. That
will only make you less able to deal with
them. Pick things you actually believe
in and then subvert that belief. In the
example above, the ideal would be if you
yourself were the author of the test, and
very proud of it.

SCAMPER
Some of the activities making up this
popular creative thinking technique – sub-
stitute, combine, adapt, modify, purpose/
put to other use, eliminate, reverse and
rearrange – appear to have their origin
in formalized brainstorming. Their inten-
tion will be obvious to readers and plenty
of information is available elsewhere
so rather than go into detail here I will
just recommend Amanda Graham’s
YouTube video at http://youtube.com/
watch?v=G8w0rJhztJ4 (retrieved 21st
October 2014 1230hrs UTC).

I also recommend the mind map tech-
nique, as described earlier, used in two
main ways: firstly as a way of express-
ing a problem visually and so getting

a new perspective on it, and secondly
as an effective way to keep notes of
your own brainstorming. The brain has
a habit of making associations. These
can take you to ideas, but it is easy
to miss the ideas in the unstructured
stream of thoughts. Mind maps help
you to benefit from the associations by
retaining the ideas.

The innovative test
improvement process
I started this article by discussing,
very simply, the cyclical nature of test
process improvement. Here is a more
detailed suggested strategy for includ-
ing test innovation in that activity (see
figure 1).

1	Strategy: decide how much time will
be devoted to attempting to innovate,
how often it will be done and how it
will be evaluated.

2.	Focus: select an activity or area you
want to improve: for example, test
reporting, repeating manual testing,
coverage of requirements etc etc. This
can be quite difficult especially if you
feel many areas have a lot of poten-
tial for improvement and affect one
another. In that case there is noth-
ing wrong with starting with random
choices: write some possibilities on
pieces of paper and draw one from a
hat. (My company QualityMinds has
developed preprinted cards specifi-
cally for this purpose; please get in
touch if you would like one a pack)

3	Form a group and have a meeting:
you need people with knowledge
about both the work as it is done
now and different ways it could be
done. This is one reason why it
is so worthwhile to attend testing
events and presentations, read
magazines articles etc even if they
are not about your domain. At
the meeting, explain the purpose,
maybe present one of the creative
thinking techniques above, and ask
participants to work individually and
alone to produce ideas

4	Have a second meeting: a day or two
later, ask each participant briefly to
present one or two of his or her ideas,
then everyone to elaborate and build
upon the ideas of others. Near the end,
ask for rough consensus on which ideas
are most interesting, taking into account
the feasibility of implementing them

5	Assign a next step to each idea: for
example “implement now”, “develop”,
“investigate”, “archive” etc. Also note the
identity of the idea’s originator and the
date it was first suggested

6	Continue to develop ideas to move
more of them towards “implement now”
and them implement them. For each
implementation, assign a person to act
as its driver: motivating for it, managing
it, capturing its results and informing
about them. Progress should be meas-
ured for each idea implemented; not
quantitatively, but qualitiatively based on
the perceptions and opinions of those
people affected by it.

7	Evaluate results and inform about them

8	Go to 1.

The innovative management model
A “management model” in this con-
text means the way top management
leads and motivates staff and allocates
resources. Obviously this varies a great
deal between organizations. But research
indicates that truly innovative ones often
have the following elements.

•	 Desire is obvious. it is communicated
frequently and very clearly that innova-
tive work is actively sought, that time
and money are being allocated to it, and
that more of both is available

•	 Work is decentralized. Small groups that
can make their own decisions are more
innovative. Too many routine obligations
make them less so

•	 Micromanagement is avoided: manag-
ers stay out of detail but instead trust
the group with the decentralized task

Where next for test techniques?

•	 A creative environment is maintained.
The most important factor is that the
staff wants to innovate. HR ensures
that staff know they are considered
the most important asset

•	 Creative and entrepreneurial person-
alities are present. All personalities
are valuable to innovation but you
can’t start a fire without a spark (©
B. Springsteen)

•	 Long term initiatives aimed at nour-
ishing innovation and creativity are
started frequently, then supported and
carried through

•	 There is cooperation between units.
The entire organization works together
with clear shared ideas and goals.
Ideas for better communication and
collaboration are especially valued and
implemented often, even on experi-
mental basis

•	 Innovative work and new ideas are
lifted up. It is made clear that the good
thing is that the idea is produced even
if it is not implemented, a decision that
usually is not made by its originator
and must not be allowed to prevent
subsequent originations.

Are you testing’s next revolutionary?
It is the nature of all good testers to
complain about the status quo, to be
objective and to love realism to the
point of pessimism. The great testing
innovations have not come from fighting
against these attributes, but from using
them. I hope these ideas for innovation
will help that trend to continue, in the
spirit that change is dangerous but lack
of change is fatal

Staffan Iverstam (staffan.iverstam@
qualityminds.se) is a test manager at
QualityMinds (see http://qualityminds.se)

Manual & Automated Test Management

Only $179 per user

Breathe…
Everything is under control

http://www.xqual.com

Meeting 1 Own work

Inform Implement

Form a
group

Meeting 2

Select areaStrategy Update ideas

Evaluate Investigate
abd detail

Dev
process
Dev
process

List of
ideas
List of
ideas

Figure 1: example innovative test improvement process

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-xqual

21PT - October 2014 - professionaltester.com

To the editor

Professional Tester may consider
me a ‘book burner’ (see http://
professionaltester.com/news/Article.
asp?id=318) because I have some
concerns about standards. As of August
29th, I have not yet signed the _Stop
29119_petition (http://ipetitions.com/
petition/stop29119 retrieved 28th
August 2014 1700 UTC) because I
have not yet been able to read the
standard it opposes. I’ve tried to, but it
seems I have to pay CHF 178 for just
the first part Concepts and definitions
(http://iso.org/iso/catalogue_detail.
htm?csnumber=45142 retrieved 28th
August 2014 1700 UTC). I’m already
wondering if this is primarily a way to
make money rather than to help people
test better. Worse yet, it isn’t even
detecting my locality, making it harder
for me to pay, even if I wanted to.

However my main concern – and that
of many, I believe – is about enforced
implementation. Could I be required to use
and comply with a standard I have never
seen before in order for my employer
(a financial institution with many B2B
relationships) to win a contract? Suppose,
for example, the standard requires us to
write and document test cases. We are
quite automation-oriented and tend rather
to generate tests dynamically: n test cases
out of a rough 8,000! (that is, 8,000 facto-
rial) possible test cases per day. So how
may test cases do we have, according to
how the standard counts them? 1? n? n ×
1 sprint? 8,000 factorial? Are the executed
tests the test cases or is the source code
the test cases? Do we need to give our
clients access to our automation Git
repository? If so, how will that help them?

Also, we don’t use a test plan. That has
not stopped us shipping quality software
to our customers for years, but since
we can’t map anything to our nonexist-
ent document (the idea of a standard is
that you can map things to it), that would
mean if required to do so we would have
to generate one. Worse than that, even
the documentation we do produce (and

we do) might not fit the model defined
by the standard. Sometimes real, useful
documents don’t fall neatly into a pre-
defined category. So we may have to
create something that is not natural to our
organization twice. Once, in the way we
need it, and once, to fulfill a contract which
we likely didn’t review or approve.

Maybe the standard says we must
create documents to create and maintain
traceability. But most people don’t read
documentation. If you buy into the Agile
principle that writing less documenta-
tion is better than writing more you will
understand this point all too well. If you
disagree, and feel more comfortable
having more documentation, you may
not. So such a standard by its nature
would tend to make software develop-
ment less Agile. Is my imagination running
away with me? Would anyone really
include a requirement to comply with a
generic standard as part of a contract?
Well, Dr Stuart Reid, convener of ISO/
IEC JTC1/SC7 Working Group 26 which
created the standard, has said “Imagine
an industry where qualifications are
based on accepted standards, required
services are specified in contracts that
reference these same standards, and
best industry practices are based on the
foundation of an agreed body of knowl-
edge – this could easily be the testing
industry of the near future.” (http://www.
testing-solutions.com/services/stqa/iso-
29119-implementation?sid=1307 ; NOTE:
requires email) So it sure sounds like that
is the plan.

In other videos (including http://youtube.
com/watch?v=e5fdJet4jpY retrieved 28th
August 2014 1700 UTC), Dr Reid states
that he does not think 29119 will change
anyone’s activities, unless of course their
client requires it. He also notes that there
are no best practices, but WG26 thinks
the standard defines good practices. But
if they are only good practices, how can
they be standards? Is it a good practice to

enforce, for example, email address con-
formity or are there standards? Whatever
they are, testing standards tell you how to
implement your testing rather than allow-
ing that to be the polymorphic process it
really is.

Part of the argument in favour of tester
certification (I know I’m changing
subjects but please bear with me) is that
most people don’t know what a good
tester looks like, so need a method of
identifying them. In the same way, most
people who don’t specialize in testing
don’t know the difference between good
and best testing practices. They may see
some standard mandated in a contract
and not realize that will require double
the effort for our team to deliver testing.
Perhaps we can explain to the sales
team why it is imperative they do not sign
any contract mandating 29119, but that
does not mean we can do the same to
customers who do not know what good
or bad testing looks like so cannot judge,
other than by trusting in the standard to
guarantee good testing.

To understand the true flavour of this
debate, I strongly recommend listen-
ing to James Christie’s talk on it at
CAST 2014 (https://youtube.com/
watch?v=A721ltyVw3o retrieved 28th
August 2014 1700 UTC). The dichotomy
is caused at least in part by personal taste
and opinion. When personal taste and
opinion starts to be enforced or coerced,
people will start fighting. Many people see
29119 as a pathway to that, so they are
fighting it.

Most opponents of 29119 don’t want to
burn anyone’s work. Most of us just don’t
want it to be thrust upon us against our
will, and vehemently object to the claim
that this has been agreed upon by the
entire international community.

– JCD, http://about98percentdone.
blogspot.com/

All ‘letters to the editor’ received at editor@professionaltester.com are published

What really burns

22 PT - October 2014 - professionaltester.com

Test strategy

The term “big data” is sometimes used
quite generally, to mean the collection
and management of data sets which are
difficult to process using popular data-
base management tools or traditional
data processing applications because
of their extreme size, diversity of source
and format, and, resultantly of both,
complexity. Besides that, there is often
also unstructured data which cannot be

handled by relational or object-relational
DBMSs at all. Wayne Yaddow described
the technical challenge in his tutorial on
testing in data warehousing projects in
the February 2014 issue of PT. He men-
tions in passing one of the more specific
meanings of the term: using the data to
derive business intelligence.

Testing a big data implementa-
tion intended to do that amounts to
assuring the business intelligence is
accurate. That requires first assuring
that the data itself remains accurate
in all important respects, then that the
analysis algorithms are applied and
their results reported accurately. This
article describes a recent testing project
which did both.

The application (see figure 1), to
which I will refer by the fictitious name
‘SpringBox’, is owned by a global car
manufacturer. It gathers data from
social networking applications, directly
and via company-specific RSS feeds.
Its output is intelligence about what
customers and the public are saying
about the brand. The marketers who
use that intelligence call the various
reports they require by terms such
as such as opinion mining, sentiment
analysis, and predictive analysis and
use them to perform, for example, ad
targeting, search quality optimization
and customer churn prevention.

Master test strategy
We were tasked to deliver end-to-end
testing, so were obliged to apply testing
at the interface of the connector APIs with
Hadoop and at the interface between the
data processing and analysis engine and
the UI. We tested the functionality of these
interfaces, and of the data processing and
analysis engine itself, by considering them
as separate black boxes.

Not so big
by Reshama Joshi

Reshama Joshi
shares details of real
project experience
important to theory

Even if test volume is large,
defects are simple

23PT - October 2014 - professionaltester.com

Test strategy

Test strategy for the connector APIs
(data fetching)
The input is the HDFS flat files into
which data fetched from the APIs
provided by the social networking appli-
cations and RSS feeds is dumped, and
the output is the MongoDB collections
created by MapReduce (including Hive
and Pig) from them.

Before automating comparison of these,
we established, by manual analytics
inspection, that the input was valid. This
was achieved, with the help of business
subject matter experts and data archi-
tects, by studying historical sources (API
responses and RSS feeds) and assert-
ing how they should be manifested in
the flat files.

Then, with the help of developers, we built
a comparison utility. This required us to
learn about NoSQL database types. Once
built and tested, the utility enabled us to
execute tests with high volumes of input
data, increasing confidence that testing
was sufficiently thorough.

Test strategy for the data processing
and analysis engine
The input is the MongoDB collections and
the output is ETLd (extracted, transformed
and loaded) data stored on Oracle serv-
ers. The functionality is performed using
the distributed ETL tool Scoop.

We tried again to build a comparison
utility, but it became apparent before
automation that it was not necessary
because the ETL functionality and its
output was quite simple. So we concen-
trated instead on the source and target
data within MongoDB, performing mainly
manual (aided by standard utilities and our
own macros) testing based on our clear
understanding of the data structures and
data architecture involved, with respect to
the data flow.

Test strategy for the UI
The input is the output of the (very
simple) data emitter engine. The
output, for compatibility with devices
used to view it, is an Adobe PDF. We

hoped a simple comparison of the two
would again suffice. As readers who
have had to deal with testing PDFs will
already have guessed, making that
comparison proved the most difficult
task of the project. But it was just as
well, because the attention we paid to
it led to the detection of unexpected
defects elsewhere. Sometimes the
output, as would be presented to users,
simply didn’t make sense. We raised
incidents we had not expected to need

to raise, and their investigation showed
their cause to be the quality of data
at source. In other words: the code
invoking the social media APIs, testing
of which was not in our original test
strategy, was defective. The defects
proved simple to fix, so retesting, that is
re-execution of our demonstrably good
tests, at all three levels, provided a high
level of confidence that the tested build
of SpringBox almost always outputted
accurate business intelligence

Reshama Joshi is global operations head of testing service line at L&T Infotech. She
thanks her colleague Palak Kedia, delivery and practice head of data centric testing,
who contributed valuable technical material to this article

OracleOracle

MongoDB
#2
MongoDB
#2

MongoDB
#n
MongoDB
#n

MongoDB
#1
MongoDB
#1

Data emitter engine

Data collection engine

Data processing and analysis engine

Sentiment
analysis

Opinion
mining

Predictive
analysis

User interface

Tablet Mobile Desktop

Hadoop

MapReduce

HDFS

Java MR Hive

Flat filesFlat files

Collector APIs

Pig

Figure 1: SpringBox layers

24 PT - October 2014 - professionaltester.com

Test management

When you need to create a test plan,
what is your first step? Start filling in
a template based on a test documenta-
tion standard? Adapt an existing test
plan, keep the generic stuff and replace
the project-specific stuff? Gather as
much information as possible, compile
and refine it, and then hold an initial
review to identify what is missing,
wrong or noncompliant?

Any of these, done carefully, can lead
to a result which can be verified as a
good example of its type, and validated
as having covered everything in its
sources. But will it be effective, and
how can we know whether or not it is?
In other words, it should describe our
test strategy and approach very well,
but that does not mean they are right,
or even good, for the software project
or product.

I think most testers, and stakeholders,
would say the answer lies in risk. The
test plan should identify and quantify all
risks and explain how and when they
will be mitigated. Then its effectiveness
can be measured by how closely to the
plan that mitigation proceeds, and at
what cost.

The trouble is the moment the plan is
published it starts to become out of date.
WIth every step of development and
testing work, the likelihood and sever-
ity of identified risks changes, and new
risks are identified. As all test planning
standards acknowledge, the plan needs
to be changed frequently. Managing that,
and ensuring everyone is up to date
with the latest version, has always been
hard. In today’s software organizations
that embrace continuous, radical change
even to requirements, very frequent
releases and multi-project working by
disparate teams, doing so with a manual,
static document is impossible.

So the test plan needs to be automated
and dynamic: stored and maintained
using a tool which updates it automati-
cally in real time according to information
received from testing and development
activity as well as manual intervention
and communicates the result – the cur-
rent plan – back to all those activities in
ways they can use instantly.

Really risky
by Stefan Patry

Stefan Patry
on preventing
test introversion

Continuous risk-based test management

25PT - October 2014 - professionaltester.com

Test management

But now that plan is based on require-
ments, test cases, development
milestones and incidents – no longer
on risk. The testing effort becomes
introverted, basing its decisions on and
measuring its progress against itself rather
than the external, objective, real-world
needs of the business. Error, waste and
delay ensues. Furthermore, the plan is no
longer comparable with that defined by
any standard.

RBT at the heart of automated
test management
At test management and consul-
tancy provider the test leaders we
believe strongly in risk-based testing
and so are very concerned about
this dilemma. Thinking about it and
experiencing it so many times has led
us, we believe, to the solution. After
great success using it in our work with

clients, we have recently made it avail-
able commercially as the first online
risk-based automated test manage-
ment platform: NoRizzk.com.

NoRizzk.com is more than a tool: it
is an expert system. You don’t start
planning from scratch, or from another
plan, but by choosing from compre-
hensive pre-defined risk categories,
test policies, types, approaches and
tools, entry and exit criteria and much
more, composing the optimum plan for
your specific project in an easy and
standardized way.

In the same way, progress against the
plan is simple to measure and monitor and
project control is achieved, as it should be,
by continually refining the plan according
to your strategy which remains focussed
on what matters: risk mitigation.

At the click of a button at any time, the
current plan can be output as a static,
IEEE 829/ISO 29119-like, document.

RBT methodology in practice
NoRizzk.com implements the familiar
risk-based testing approach – risk
identification, assessment, mitigation and
management – as explained in many
testing books, standards and syllabuses,
prioritizing both project and product risks
according to impact and likelihood (see
figure 1).

But that is not enough! in the real world,
test managers need to take many more
factors into account, including some
which are not easily defined or quanti-
fied. NoRizzk.com goes beyond theory to
deal with this by determining a detailed
risk appetite profile. Again you are not
asked to estimate numbers out of thin

Figure 1: risk assessment and prioritization

26 PT - October 2014 - professionaltester.com

Test management

Figure 2: risk situation vs risk appetite

Figure 3: test strategy matrix showing test level, type, phase and instance

Test management

air, but guided by an expert system offer-
ing predefined choices, per risk, that you
combine and refine to capture exactly
your current risk management strategy.

Decisions on test extent, approach etc
are suggested based on the differ-
ence between the risk appetite and the
current risk mitigation level, not simply
on the risk prioritization. You control
testing based on the risk situation now,
not when initial planning was done.
That situation is depicted graphically
in NoRizzk.com’s Risk Radar display
(figure 2). Each coloured sphere
represents a risk: its size, impact; its
proximity to the centre, likelihood. The
grey zone represents risk appetite.

NoRizzk.com also implements a
standard, familiar test entity and
process model (for example, it offers
full integration with HP ALM), defining
test levels, types, phases (including
non-sequential phases such as sprints)
and instances, all fully customizable to
align with organizational and project test
policy. These entities are displayed in
the test strategy matrix (figure 3) which
translates the current risk management
situation directly to test activities, both
analytical and empirical.

NoRizzk.com does not try to change
the way you test, or manage testing: it
just helps you to do it right. Right means
always based on risk

Stefan Patry is CEO and managing partner of the test leaders (http://thetestleaders.
com). He thanks the whole NoRizzk.com team for their valuable assistance with this
article. A free trial is available at http://NoRizzk.com

Keep full control over your risks

Increase your test strategy efficiency

Maximize your product quality

Make your testing better, faster and cheaper...

...in Classic and Agile projects

The world’s first risk-based test management platform
Get your free trial today at http://trial.norizzk.com

Want to save 20% on your testing budget?

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-norizzk
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-norizzk

28 PT - October 2014 - professionaltester.com

Test management

There is an old saw about management:
that the three most important success
factors are communication, communi-
cation and communication. It is a half
truth that proves half truths can be more
misleading than untruths and can cause
more human pain.

Communication refers to the ways and
means by which information is trans-
ferred. While obviously important, they
are not more important than the content
of the information which has value only
if it is fit for its specific purpose. If it is
not, communicating it contributes to
failure not success.

There is an alternative interpretation,
communication by an individual, which

I will ignore here on the grounds that a
manager who cannot express adequately
what is in his or her mind is (or at least
should be) a self-cancelling problem.

So what is the purpose of the information
communicated? In a work environment it
is to convey data and/or ideas, intend-
ing to support management policy or
strategy. Discussion for its own sake is
not only unproductive, but harmful, and
should be eliminated.

When you go into a physical meeting, you
have (I hope) specific aims related to cre-
ating, starting, expanding or maintaining
business, and a strategy, even if rudimen-
tary, to help achieve those aims. If not
you, and probably the whole meeting, are
doomed, because of you. Yet in corporate
communication by any other means this
is often forgotten and much vaguer aims
such as the quest for absolute truths or
the meaning of life, or more often simply to
show off or win arguments on any subject
however trivial, arise and distract us.

In business communication, rhetoric is
anathema and logic is inadequate. To sup-
port any position or advance any strategy,
data is required: preferably statistical, but
at least metrical (ie involving measure-
ment) and indicative of performance.
Furthermore, only data which actually does
achieve one or both of those aims should
be presented. Some will say this is bad
science, and in other contexts they would
be right, but here we are not conducting
science but business, and in business only
one thing matters: sales. I don’t mean by
this that, for example, quality of delivery,
compliance and ethics do not matter:
rather that they do, because doing them
well promotes sales and doing them poorly
will always lead, even if not immediately,
to loss of sales, or of the benefit of sales
already made.

Help the afflicted
by Sakis Ladopoulos

Negotiation advice
from PT’s master
test manager
Sakis Ladopoulos

How to fight for your right to test

29PT - October 2014 - professionaltester.com

Test management

What has sales got to do with testing?
Nothing. Neither should testing have
anything to do with sales.

Engineers often find understanding
the business perspective on their work
difficult and discouraging because it is
aligned with their own perspective only
by chance. Indeed, there are cases
where it seems that business perspec-
tive diminishes the value of engineering
work. As with testers and programmers,
it’s a mindset thing. To be effective,
engineers need to act as though they
believe that their job is to handle the
very essence of the work at hand and
that they know the deterministic truth
about it.

Even if that were so (which it is not
but that’s a different article, maybe
for Professional Psychologist) it is still
those responsible for business deci-
sions who should make them. Testers
can label an incident critical or minor.
They cannot say the critical one should
be fixed first, because that depends on
other factors which are not their con-
cern: and should not be their concern,
because the mindset testers, correctly,
endeavour to stay in prevents them
from considering those factors correctly.
The converse – that those deliberately
cultivating a business mindset should
stay away from objective, isolated, low-
level testing decisions – is obviously
also true. Accepting these boundaries
is essential to successful negotiation by
testers with business.

How can testing sell itself?
In business-to-business negotiations
the importance of understanding the
other side’s point of view is frequently
emphasized. I have just argued that in
the particular situation where testing
negotiates with business for the man-
date and resources to test, this is not
the right way. It is very hard indeed for
a tester to think like a businessperson
or vice-versa, most if they try will not
be able to do so adequately, and to the
extent they do succeed they will dimin-
ish their ability to do their own job.

So I urge testers to continue to think like
testers and do what testers do: and one of
the ways that can be summed up, I think,
is that testers provide answers to ques-
tions. Now answering questions can take
a long time, if one waits for the question
to be asked before starting to seek its
answer. So testers also aim to predict the
question in advance and have the right
answer, supported by evidence, ready.
That is what testers should do when
entering negotiations with the business
for which they work (or want to work).
This strategy can also be compared with
the most popular technique used by job
interview candidates.

Dealing with hostility
Previous contributors to PT have
discussed at length the apparent con-
tradiction that testers must do all they
can to detect defects but must not want
defects to exist. The fact that some
misguided testers want defects to exist
so they can detect them is not their
fault but that of their misguided masters
who do not understand testing or how
to measure its effectiveness.

Its consequence is that many in IT, includ-
ing some at high corporate levels, think
testers are sick. This belief often gives
rise in negotiation to hostile questions,
asked with sincerity but rooted in igno-
rance. For example: why do we need you
to define phase exit criteria just to hold
up production by refusing to sign them
off? What good does it do if you antago-
nize and demoralize the developers by
analyzing and reporting their mistakes
in gory detail? How can we keep the
confidence of our clients if you wash
our dirty linen in front of them? Where is
the return on investment in this test tool
which will help you detect more defects
that don’t matter? Why do we need to
do something which, if it does not cause
change to the product, is useless; but if it
does is therefore dangerous? Why do you
request money to bring chaos?

Some reading this will think some or all of
these questions unthinkable, Others, less
lucky, will recognize their theme and the

attitude behind it as something they deal
with often if not continually.

Testing as the bearer of bad news
History relates many messengercides.
The trouble with testers, from the point of
view of everyone else, is that testers tell
the truth and everyone else, sometimes,
would rather that truth were not told.

According to Herodotus, Xerxes com-
manded that the sea be whipped
because it had washed away his new
bridge. Xerxes was probably mad but
you wouldn’t do business with him if
you had the nerve to tell him so. You
probably wouldn’t do anything ever
again. Again it is not a matter of right or
wrong. Trying to explain to him, a man
who really wants a good bridge and is
interested in bridge building, how to
make the bridge better might give you
more chance. But, if you won his trust
and then later he found out you had
being lying, a bad fate would befall not
only you, the worm who deserved it, but
honest, hard-working innocents trying to
find out the truth to tell him.

Don’t let this be you. Never say anything
like “we won’t raise incidents that we, or
you, consider unimportant” or “we’ll talk
with developers about incidents before
we raise them”. That is trying to sell him
something he should buy, but does not
understand why, by telling him the reason
he should buy it is that it is no good. He
may be mad but he is not stupid. Even he
knows not to trust a liar.

The best strategy is to promise to answer
his questions truthfully and dare him to
listen. Tell him: we are not the good guys
who will tell you what you want to hear; we
are the bad guys who will tell you the truth.
But we are your bad guys and will work
our hardest to make sure that what we tell
you (and only you) really is the truth.

Answering how, what, and
when questions
Once you have sold that concept, some
obvious questions will come to the mind
of the prospect: how much testing is

30 PT - October 2014 - professionaltester.com

Test management

needed? How many testers? Why do we
need to test a particular release of which
the developers say they are confident?
What makes a fix need a retest? When
do we need to regression test, and to
what extent? What methods and tools
should be used?

These are testing questions, so answer,
politely, along a line similar to “the
only way to know that is to do a small
amount of initial testing. Please will you
sanction that, and then I’ll give you the
definitive, explicit answer(s) before this
time next week”.

Be prepared also, if asked, to hazard a
guess immediately. How to guess is a
personal decision: you could make the
best honest guess you can, throwing your-
self on the mercy of fate; you could try to
guess high, that is expensive, choosing a
high-risk, high-payoff gamble; or you could
try to guess low, improving your chances
of living to fight another day. Personally I
favour the latter: after all, your low guess
may prove to be approximately right, and if
not you may gain at least an opportunity to
present a better guess with justification.

Answering why questions
More likely, and better, business ques-
tions are concerned with seeking that
justification: for example “why do we need
to test this release?”, “why should we
adopt this standard?”, “why should we
buy this tool?”, “why should we trust you
to answer these questions?”. These and
similar questions are instances or encryp-
tions of the fundamental one: “why should
we pay for testing?”.

Make sure your prepared answer relates
directly to increasing business sales. In
the context of the product or and how

it is used, point out that quality leads,
repeat sales and growing market share
all come about only because of consist-
ently successful deployment and use of
the product: that is, timely release of good
quality software, regardless of whether the
offering is the software itself, or something
else that depends upon the software.

Cashflow is king: risk is boring
Be positive. Testing negotiations – and
testing product and service marketing
efforts – are very prone to the mistake
of going on about the negative, what will
happen if you don’t test well.

It is a mistake because successful busi-
ness people are almost always confident.
Threatening them with consequences of
failure, project or product, even with real
examples, will not work because they will
not believe it will happen to them but do
believe in their ability to manage it away
if it does.

They also believe very strongly – and
rightly so – in the real danger of the busi-
ness failing due to spending too much
against too little revenue.

So do not say “doing this testing well
will reduce risk”. Risk is of the future
and saying that risk can be or has been
reduced is speculative. You may strongly
suspect it, but you also know you are
not certain. Anyone, to sell something
honestly, must believe in it.

Rather say “doing this testing well will
improve the product faster so make it
sell better, make its development and
maintenance cheaper, and get new
versions of it to market earlier”. Say that
knowing, as a tester representing all
testers, it to be true

Frequent PT contributor Sakis Ladopoulos (theodosios.ladopoulos@hotmail.com)
is a test manager at INTRASOFT International and an independent QA and test
management consultant

Manage your test cases easily

Sign up and get your package

www.occygen.com

Synchronise
your data
with other

toolsDifferent
packages

at your disposal

Support team available

Automate processes

support@occygen.com

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-occygen
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-occygen
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-kualitatem

JOIN US AT EUROPE'S LARGEST

SOFTWARE TESTING
CONFERENCE & EXHIBITION

+ An Amazing Social & Networking Programme

60+ Sessions Including 6 Keynotes • 5 Full-Day Tutorials
6 Half-Day Tutorials • 40 Track Sessions • 3 Workshops

VIEW FULL PROGRAMME HERE

VISIT www.eurostarconferences.com OR

CONTACT info@eurostarconferences.com FOR MORE INFO

http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-eurostar
http://professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt29-eurostar

