
Including articles by:

Evgeny Tkachenko
EPAM Systems

Huw Price
Curiosity Software Ireland

Justin Watts
Loblaw Digital

Johan Steyn

Viv Richards
Vizolution

Cool tools to
transform testing
Cool tools to
transform testing

D
e

ce
m

b
e

r
2

0
1

7

43

E s s e n t i a l f o r s o f t w a r e t e s t e r s

TE TER

Visual Integration
Processor

Where have you been all my life?

VIP is a lightweight framework to help you build better DevOps.

It acts like DevOps glue, so people and tech can work together seamlessly.

Integrate, monitor and control your software factory

Let your systems talk to each other with ease

Build dependency maps as you test

Harvest traffic to drive AI

Drive everything using ChatOps

Just add imagination

www.curiositysoftware.ie

Cool tools to
transform testing
Cool tools to
transform testing

D
e

ce
m

b
e

r
2

0
1

7

43

E s s e n t i a l f o r s o f t w a r e t e s t e r s

TE TER

We aim to promote editorial independence and free debate: views

expressed by contributors are not necessarily those of the editor

nor of the proprietors.

© Professional Tester Inc 2017

All rights reserved. No part of this publication may be reproduced

in any form without prior written permission. ‘Professional Tester’

is a trademark of Professional Tester Inc.

Professional Tester is published

by Professional Tester Inc

Editorial board

Professional Tester would like to extend its thanks to Lars

Hoffmann, Gregory Solovey and Dorothy Graham. They have

provided invaluable feedback reviewing contributions. The views

expressed in Professional Tester are not those of the editorial

team.

Editor

Managing director

Art director

Publisher

Sales

Subscriptions

Vanessa Howard
editor@professionaltester.com

Niels Valkering

Christiaan van Heest

Jerome H. Mol

advertise@professionaltester.com

subscribe@professionaltester.com

32017 - professionaltester

 From the editor

How cool tools can
transform testing
It is always interesting to hear from people with a long pedigree in the software

industry, particularly when they take a new direction and offer a fresh perspective on

testing.

Huw Price was VP at CA Technologies, has founded five companies over the last 30

years, and he believes that recent developments in the vendor marketplace and open

source mean that it is now possible to simply chain together components to quickly

assemble solutions. He sets out a step-by-step guide for building what he characterizes

as truly reactive DevOps.

Problem-solving dominates the rest of the issue too. From avoiding classic test

automation pitfalls to building a visual testing framework, our contributors are

meeting everyday challenges and creating new approaches so better outcomes are

within reach.

If that deals with today, Johan Steyn looks at the skillsets testers may need tomorrow.

A timely reminder as we reach the end of the year and look ahead to the next.

As always, we hope you enjoy the magazine and the team at Professional Tester

would also like to take this opportunity to wish all of our readers a happy and

prosperous 2018.

Vanessa Howard
Editor

Twelve reasons why test automation can fail
Evgeny Tkachenko sets out the issues which hold back test automation initiatives
and highlights how to avoid repeating common mistakes.

A guide to building a truly reactive DevOps strategy
There is some very cool tech out there Huw Price argues, and now it is possible
to drag and drop it into your world to build DevOps able to keep pace with ever-
expanding demands.

Don't compromise on tool selection
It took Justin Watts and his team almost two years to find the right test
management software and here he reveals what it takes to find the perfect fit.

The testers of tomorrow (today)
In an excerpt from his new book, Johan Steyn sets out what testers will need
to be 'future proof'.

Spot the difference: automating visual regression testing
Viv Richards shares his experience of building a visual testing framework and
demonstrates the value it can add to testing.

4

9

13

16

19

11

2222

How to identify and avoid the

common factors that hold back

test automation success

by Evgeny Tkachenko

During my career as a QA consultant, working across web,
desktop and mobile projects, I've encountered common
reasons why attempts to introduce automation failed. Here,
I set out what they are and what can be done to avoid them.

1. Insufficient budget
Test automation (TA) consumes time and money. Some
TA projects fail before they begin because of cost restraints.
I do hear remarks such as: “Budget shouldn't be an issue
if companies stick with open-source solutions for their
automation needs”, but test automation is not just about
which tool you use. To succeed you need skilled, experienced
automation engineers, continuous delivery/continuous
integration systems, machines/servers, an environment
dedicated to automated tests (their own device test stand or
cloud solutions, like Sauce Labs, AWS Device Farm, etc.) and
all of these demand investment. Costs can't be avoided and a
long-term perspective is essential if organizations are to
evolve.

2. Wrong tool
It takes a lot of time to evaluate a relevant automation tool, but
it is worth the effort. It helps to ask the following questions:
ŸDoes the organization have the necessary skill sets

available?
ŸWhat is your budget?
ŸIs it suitable for the project environment and technology you

are using?
ŸIs the tool version stable?
ŸWhich testing types (load testing, functional testing, etc.)

does it support? Choose the tool according to the testing
types of your application needs.

ŸDoes the tool support easy interface to create and maintain
test scripts?

ŸDoes the tool support a data-driven paradigm? When
choosing an automated testing tool, check which data
formats it can use, such as text files, XML files, database
tables, and others.

ŸDoes it provide good reports?
ŸDoes it integrate with your other testing tools like project

planning and test management tools?

Managers (who have never dealt with test automation and do
not have QA engineers who are experienced in automation in
their team) usually choose the easiest way to start a test

Stumbling blocks at the outset

If you have thousands of automated
tests, it means nothing if those tests fail

to check what is needed.

 test automation

4 2017 - professionaltester

12 reasons why
test automation can fail

3333
52017 - professionaltester

automation - buy a “record and playback” testing tool.
It is a seductive option because you don't need to have
programming-skilled engineers to start automating your
tests, you get fast first results, it usually includes logging
and reporting functionalities, runner, etc., you don't need
to build it by yourself and your first automated tests are
soon ready.

But maintenance can be very expensive. Tests captured by
the tool are usually fragile and even minor changes in the
application under test (AUT) can require that all tests need to
be updated or re-recorded. This happens because tests are
often dependent on the precise placement of UI objects and
may be affected by screen resolution. With such tools, you are
mostly tied to use its own runner without remote execution,
parallelization, configuration, data driving, etc.

I have witnessed several failures where automated testing
began with an expensive “record and playback” testing tool.
The project appeared to begin well - a smoke testing suite
which consists of 18 UI automated tests was ready in a week,
the run took only 25 minutes instead hours of performing them
manually. It was an "epic win". After a month they had more
than 100 automated tests. But soon they started noticing that
they spent a lot of time updating existing tests to make them
reflect changes in the AUT. Two months later, when they had
more than 250 automated tests, about 50 of them were
constantly failing because the QA guys could not sustain the
pace needed to develop new tests and keep the old ones in
good shape. As a result, they had to stop using this tool and
throw all automated tests away as it is almost impossible to
switch from a commercial testing tool to an open source one
without losing everything you have built.

3. Wrong team
Test automation is not a silver bullet, where it helps is:
· When there are many repetitive tests
· When there are complex validations (data in databases,

big data testing, API, etc.)
· When there are frequent regression testing iterations
· When you have a large set of test cases (automated scripts

run much faster than manual executions)

I was asked a million times: “How many QA engineers
do I need for my project if I have X developers?”. There is
no easy formula. It depends on the complexity of the project,
software development methodology, tools and technologies

used. But based on my experience, I can safely say that if you
work in a "true" agile world (with requirements analysis and
automated tests written in advance) then you need to have
a ratio 1:3 (QA:Dev). An ideal situation is when you have a
ratio 1:2 but I have never had such "luxury" and I always had
to optimize the efforts and change a QA-DEV process to fix
this performance bottleneck (testing usually is a "bottleneck").

An ideal set up would be one senior QA automation
engineer responsible for building or/and supporting of a
testing framework, writing low-level methods (bricks) which
other engineers can use to write automated tests on a higher
level. I call this position “developer in testing”.

Two junior/middle-QA-automation-engineers-transformers
who are not squeamish to do a test design, analyze require-
ments and test something manually. They can do everything
and could be owners of any product stories and they lead
them throughout the whole life cycle from a requirement
analysis stage, test design, writing and performing auto-
mated tests and up to validating a feature in the
production environment.

What you want is to eliminate misunderstandings amongst
those who analyze requirements, those who test manually
and those who automate. People who take responsibility for
the success of the user story or functionality. I call these guys,
able to write automated tests using the bricks which have
been prepared, “Swiss Army testers” or “QA transformers”.

You also need a QA Lead who builds a test automation plan
and adjusts it accordingly. This person has to be technically-
skilled and have experience in introducing test automation.
They need to truly know the project, its dependencies, and
architecture, to consult with others and help with test design,
requirements analysis, and even a code review. They should
lead and drive the automation process, I call the position
"Lead driver" or “QA Optimus Prime” because they have to
lead and guide other “transformers”.

This QA team of four people can successfully handle a
workload produced by 10-12 developers. A 16-people team
(12 Dev + 4 QA) does not look like a scrum, as it should not
exceed 9 people. For instance, if we have 16 people on the
initiative, a scrum requires splitting into two or three teams.
But it works in Kanban because we don't have any limits on
team size as well as in Scrumban. Also, this QA team of 16
people could support several projects and act as one huge
Scrum team.

 test automation

4444
5555

6666
7777

UI automated tests are dependent on the AUT. The UI of your
application changes over time and these changes affect the
test results and you have to update your scripts to keep your
tests “green”, otherwise, your tests will not find controls to
interact with and will result in a false fail. Sometimes this
procedure of reviewing failed tests turns into a nightmare,
especially if locators are spread out throughout the testing
framework, or if your tests rely on location coordinates
to find the control.

To avoid this mishap, in the requirements analysis phase,
automation testing engineers should specify on the mockups
which locators (IDs or special parameters) developers should
add for which controls. This provides a QA with an ability to
write UI automated tests before implementation, and the fact
that locators will not be affected by DOM changes of web
pages and will make the tests more stable and easier to
maintain. Manage the changes in advance instead of
reacting to them post-factum.

6. Hard-coded data
Do not hard-code input data. Instead of specifying exact
values of parameters, use scripts (or API calls) which find or
generate an appropriate test data in a database. It will make
your tests flexible, it is easier to keep scenarios up-to-date
and make tests independent from the environment you use.
Also, it helps to avoid the “pesticide paradox” in your
application - the phenomenon where the more you test, the
more immune the software becomes to your tests - just as
insects eventually build up resistance. Do not use the same
data for testing all the time. If you have forms which you fill
out with data, for instance, a name field, instead of entering
something like “Bob”, “John” or “Test” use libraries (like
javafaker or build your own to generate random data)
and specify randomizer.name().firstName().

7. You have a lot of automated tests,
but a full run takes too long
I have taken on several projects where automation
failed because the test runs took too long (in one instance,
it took 3 weeks). Every morning began with the launch of
different bunches (suites) of tests and analyzing the results,
every day was Groundhog Day. If those tests found issues
then it was impossible to repeat the whole regression suite
after they were fixed (due to lack of time) and as a result,
some bugs were leaking to the production
environment.

6 2017 - professionaltester

 test automation

Based on my experience, it is not a good idea to ask
developers write GUI and integration tests. QA engineers
should have specific analytical skills and have to have a good
expertise in test design. Developers should be responsible for
unit tests only, of course, they could help QA engineers make
the AUT testable. If the product is huge and it has a lot of
dependencies on third party services - there should be a
separate QA team which should analyze requirements and
help developers to avoid introducing bugs by preparing test
data and discussing acceptance tests and write automated
tests and maintain them.

Test automation is not a “fire and forget” operation. Automated
testing needs to be continuously updated to manage
changing components (controls) and feature details. And
especially in case of GUI automated tests, it can take a lot
of DEV efforts.

4. Bad planning and unrealistic expectations
A good plan must describe what will be automated, when
and by whom. It must cover all types of automated tests: unit,
integration and functional. Organizations cannot invest into
introducing automation thinking it is the bug-finding silver
bullet. Yes, automation can free up time spent in regression
testing and re-testing, and help focus on requirement analysis
or exploratory testing, but to gain real advantage you have to
gain a sufficient test coverage at first place. If you don't share
this vision with stakeholders, you could be in trouble. The plan
should contain milestones, including smoke testing suite,
sanity testing suite, functionality covered, where the "biggest
pain" is, regression testing suite, new features. You can always
ask a product owner about functionality priorities and create a
risk matrix which helps to determine where to start. The main
goal of this procedure is to identify where we can benefit
from automated testing.

As well as helping to secure success, listing these milestones
and reporting on progress will help to get rid of another
problem - lack of visibility.

5. Automated tests which are poorly written
There is no single right way to build a testing framework,
but there are several wrong ones. "Quick and easy wins,"
can look seductively cheap, but not when they are impossible
to maintain. Try to avoid copy-pasting and duplicating code
and creating preconditions for tests via UI, especially via UI of
other projects, make your tests independent from each other.

How we maintain automated tests

8888
999999
10101010

Make your automated tests independent from each other, do
not use the same data (users, accounts, organizations) and
make it possible running tests in several threads simultane-
ously. Also, do not duplicate steps of automated tests which
are not related to the functionality - in other words if you need
to prepare preconditions for your automated tests do it in the
“cheapest” way.

For instance, if we write tests for a cart functionality, then all
steps (methods) which describe how to find an item to
purchase have to be located in separate test cases for the
searching functionality. If you test cart functionality, don't cover
tests searching functionality again because it should be
already covered by independent separate automated tests, go
directly to the item using URL address or even generate an
order using back-end (API) and go to the cart. Of course, you
will need to have at least one end-to-end scenario automated
which covers the whole purchasing flow, but most of the
automated tests should be focused on one particular
functionality and use preconditions which do not duplicate
(overlap) other scenarios. On top of that, if you need to change
something in the searching scenario then you don't have to
look through all functionalities where you could use these
steps (methods) - you just need to change them in one place
(in tests for this functionality).

If you find (during requirements analysis) that it is impossible
to automate the testing of a functionality due to some kind of
restrictions in the system you can always ask a product
owner to include a task for developers to implement something
(like handler, dummy data or other workarounds) to overcome
this barrier and make it testable. For example, we have a
requirement which says: "We have to implement a registration
functionality in our web application". This type of page contains
a captcha which protects it from brute-force attacks. That
means it will be impossible to automate verification of this
functionality. But we can ask to add an additional task to
provide an ability to bypass it for automated tests in testing
environments exclusively. It could be an environment property
which disables the captcha or it could be a static key you can
use to put in the captcha field to pass the validation.

A lot of teams start test automation with the part of the appli-
cation they spend most of the time on - UI. But running of this
type of automation is time-consuming. A run of 100 integration
(API) automated tests takes seconds while a run of 100 UI
automated tests can take hours. Also, UI automated tests are

less stable and costlier to maintain than integration ones. Be
focused on unit tests (should be a developer's responsibility)
and integration test coverage, adopt a “pyramid testing”
strategy. And finally, if you do need to have a lot of UI
automated tests then parallelize your automation run.

8. Poor test coverage
Poor test coverage, or test coverage which grows too
slowly, can't sustain the pace needed to implement new
functionalities of the AUT. A tight deadline encourages us
to say: “We will test it manually now and we will cover by
automated tests later.” This “later” never comes because other
deadlines soon arrive and this technical debt accumulates.
Postponing test automation risks not demonstrating its
effectiveness but a fail before it even begins.

9. We have a lot of automated tests,
but we don't run them often enough
Run your automated tests as often as possible to make sure
that the AUT and your tests are in good shape - especially if
you must integrate with other services not under your control.
You should know precisely when a problem started appearing
in your app and without frequently launching automated tests
it is almost impossible to do so. Projects with automated tests
but without test automation are at risk. Automated tests are
just scripts which help you avoid manual testing while test
automation is all about automating the process of tracking
and managing the different type and level of tests. Automated
tests alone are almost useless without proper application.

10. We have a lot of automated tests, we run them
but we do not analyze the results
A lot of teams have a culture of ignoring failing tests or a red
continuous integration run. Often it is a result of a lack of trust
in the tests. I see it almost all the time - teams with “that test
sometimes fails when nothing is wrong and there's nothing I
can do” and soon people are ignoring real failures.

The best way to fix this situation is to make your tests
trustworthy again. If the test is bad - fix it or delete it. If the CI
system has a bug fix it (or find a new CI). If there is a broken
feature fix it.

11. We have a lot of automated tests,
and they pass every time
Poor coverage of real-world cases is the most common and
obvious reason why test automation fails. It is obvious that

How we use automated tests

72017 - professionaltester

 test automation

11111111

12121212
8 2017 - professionaltester

 test automation

the purpose of automated tests is not to find new defects
but rather to find regression bugs after implementing a
new feature. Despite that, there are a lot of cases in which
regression problems slip through to the production
environment. When we start relying on automated tests
we have to be sure that they cover every important
aspect application functionality:
· All services respond properly (integration tests)
· There is no performance regression (performance tests)
· A layout is not broken (automated visual testing)
· The application behaves according to requirement

(functional UI tests)

But even if you have everything from the list above covered
it does not guarantee that you will not miss a bug. If you have
thousands of automated tests, it means nothing if those tests
fail to check what is needed. You will never reach success with
test automation if you are not good at manual testing. Not
having an understanding what you should test means not
being ready to automate your testing process. If you auto-
mate rubbish – you get nothing but automated rubbish.

It is always a good idea to have your test cases reviewed
by a business analyst or product owner prior to automation,
they will be able to provide feedback and help determine what
is the most important aspect and what should be covered. It
is better to not have automated tests at all than have some
you can't fully rely on. It will lead you to the "fake" confidence
in your automated tests and, as a result, you won't perform
manual tests for this functionality and miss defects.

12. Test automation = automate (manual tests)
Even after introducing test automation, QA teams have
been known to carry on writing test cases in the same way
as before without making any changes. First of all, you need
to find how to prepare preconditions. Also anyone who writes
test scenarios for automation should understand what really
should be tested in the scope of the current test case and
what could be skipped or simplified. It is also vital to include
all validations which make sense and exclude all
unnecessary ones.

Some people try to embrace everything by validating
everything on every screen of the application (including
text, a location of an element in the DOM, size, and style of
elements) in one functional automated test scenario. A good
test scenario for automation should be short and specific, for

Evgeny Tkachenko is QA lead at EPAM Systems, with a background

in automation testing and test management on complex projects in

the telecommunication and online entertainment industries.

instance, if you want to check what controls look like on the
page use an automated visual testing tool, do not include it in
the functional automated tests. The test case must not contain
more than 15 steps (actions + validations) otherwise It will be
difficult to maintain, and the test could fail before reaching the
functionality it was intended to test due to some problems in
previous steps.

On the other hand, you should include all validations
which matter for this functionality. One team, which thought
it had 100% test coverage, missed a bug which cost the
organization thousands of dollars. The QA team had designed
automated tests for each part of the functionality. They had
separate automated tests for searching, cart, checkout and
reporting. To test the cart functionality, all orders were
generated via API as well as for the reporting functionality,
all tests were independent and fast. But during refactoring of
code, a bug was introduced which caused the wrong behavior:
on one of the steps purchasing flow (adding an item to the cart
or checkout or sending an order to be processed) an
additional fee was added to the total price if a user did that
through UI. As a result, a lot of users have been overcharged.
This issue could be found only if the team created at least one
automated end-to-end scenario to check that the price of the
item is the same on the search results page, in the cart, on
the checkout page (if no taxes) and in the orders report. It is
not good when your automation consists mostly of end-to-end
scenarios but you can't afford to not have them at all, you
should always find a balance.

There could be other reasons for failure like wrong
programming language used, an unstable testing environment,
lack of time, lack of support from general management, etc.,
but all of them overlap with those I have set out in this article.
All projects are different and the approach for each should
be customized.

The main key to avoid test automation fails is to recognize
that test automation is just like product development. It
requires the same kinds of preparation, planning, and
investigation. Then it has to be designed, managed and
properly maintained for the long-term because the test
automation project is going to go through exactly the
same lifecycle as your application under test

Conclusion

A guide to building a truly reactive

DevOps strategy

by Huw Price

enough of the “correct” automation, poor and misunderstood
testing coverage and very little dependency mapping between
software components.

If we look at four categories, ‘people, processes, tools and
politics’, there have been some notable changes. First, on a
positive note, as far as people are concerned, testers are now
seen as “critical modellers” and are being brought in earlier to
help design testable systems. Looking at processes, agile
practices are everywhere but I’m afraid the procedures have
taken over from the spirit of agile. Politically, in-sourcing is
back and working in more connected teams is becoming
more common, which is no bad thing.

So that leaves tools. Have they really helped drive better
systems? If they have, I am afraid that it is more by luck than
judgement. Software vendors tend to focus on their silo and as
an afterthought try and connect it to other systems. Some of
the consultancy vendors have started to build integrated end-
to-end solutions but they tend to be rebadged as consultancy
projects and pushed out as software frameworks.

And where do we need to be?
As the testing industry has limped along the software world
has changed dramatically and over the last three years, it has
exploded into life. With the introduction of Git sharing, vendor
marketplaces and open source there is now some very cool
tech out there to help build the nirvana of a truly reactive
DevOps strategy.

Testers should be using this cool tech and they should be
able to drag it into their worlds quickly and easily. But, as
the saying goes, everyone is always too busy chopping down
trees to buy a chain saw and I appreciate that stopping a re-
lease to improve processes is difficult. The cost of changing
processes far outweighs the cost of the software, so it is
necessary to produce a step-by-step plan with as little
disruption as possible.

It can be done and here I’ll break down the approach into
a few phases. These can be done in parallel but like all good
strategies, all steps taken must recognize the end goal and
how each phase builds towards that goal.

Expose what you have
If you look at most tasks performed by development teams, a
lot fall into repeatable categories, probably 90% of the routine

Testers should be using this cool tech
and they should be able to drag it into

their worlds quickly and easily

 How to harness cool tech

92017 - professionaltester

 Test strategy

It seems that every company is currently working on DevOps
initiatives, whether they are shifting left, shifting right or doing
the hokey cokey. There have been enormous changes in
our industry yet the reality is that most organizations are
struggling to move faster. Even gains made in speed are
not guaranteeing improvements in quality. So, what can
be done to ensure that testing cannot only keep pace
with demands but reshape DevOps?

So, where are we today?
Over the last ten years I have worked with numerous
enterprises and have spent a considerable time implementing
quality initiatives and driving a higher level of automation in
testing. What is clear is that core problems have remained
the same throughout this period: bad requirements, not

Populate RiskEngine

Calculate Time

Virtual Services

Create Test Data

Create Automation Data

Need More Machines

GetPowerSet

EC2StartInstances

Process Risk Stack

Input

Result

Double-click to view

Double-click to view

Virtual Services

GetPowerSet

EC2StartInstances

varRiskFactors

varResult

Edit RuleSet

True

False

tasks could be initially exposed and run via a Chatbot.
Products like Slack are now omnipresent and as the Slack
team point out “context switching” i.e. jumping between
products can waste up to 20% of your time.

As new tech processes get created by anyone in the team
expose them to Slack and get others to use them. Fire off jobs
directly from your primary communication tool and let the tech
do the work in the background.

Start taking control
Now you have these processes more widely used and
under a common tech stack you can start “gathering” up the
information and pushing meta information to command and
control systems. For example, you requested a set of
regression tests through Slack and some have failed, the
developers are automatically notified, and a new environment
has been spun up automatically, ready for any fixes to
be tested in.

So far you haven’t really done much beyond adding in some
control and reducing context switching but you can see one
action getting a result, which then implies another is starting

to bring efficiencies. Over time it will become normal to look
for existing jobs and define actions linked to a process. You
are now starting to join up process and tools.

Learn from the past
The chances are that an effect has been seen before, for
example your payments take on program may start rejecting
customer files and marking them as invalid. Has this failure
happened before and more importantly what was the root
cause of it? In this case it was one of the rule configuration
files had changed and some of the combinations had not
been tested. This had happened before, so we have a clue
as to what might have gone wrong. If we turn this on its
head, why don’t we automatically monitor if the core files have
changed and, first, let people know it is about to happen in the
next release then, second, invoke a more rigorous set of
automation tests?

In other words, look for root causes not effects and set up
automated alerts looking for potential problems before they
occur. Linking these problems to a risk factor can then
influence which tests are run. Start to think in terms of types
of risk as well, this is an important change to the way teams

10 2017 - professionaltester

 Test strategy

Figure 1: VIP and dynamic provisioning

Requirements

Intra System
Inter System

External Systems
Negative Responses

Object Library
Script Mapping

Results

Tests

Automation Scripts Test Data Virtual End Point

Development Data Warehouse

Coverage
Explosion

JIRA TESTS AUTOMATION
OBJECTS

TEST DATA
CHARACTERISTICS

VIRTUAL
CHARACTERISTICS

ACTUAL RESULTS RISK

Machine
Mgmt

Risk
Model

TEST DATA OBJECTS

VIRTUAL OBJECTS

AUTOMATION OBJECTS

MODEL

Once you look at the problems using a more analytical
approach, you can start applying this philosophy everywhere
and start spreading out from the basic integrations. Think
about how information flows up and down in your develop-
ment world and whether it can be tracked effectively.

Technical integration and workflows
It is said that necessity is the mother of invention which
is why we’ve been working on VIP, a general integration
tool that can glue together DevOps tools, and Figure 1
is an example.

Virtually all testing and development tools have a reasonable
API layer that allows data to be read and added easily, what
they all lack however is an inbuilt dependency map to help
you track anything more than the basics. Few of them take
advantage of the new cool tech and they are for the most
part difficult to integrate into an AI strategy. This is what a
workflow engine like VIP addresses.

In order to harvest information flowing between tools you
need to take control of the feed and pass through structured
information such as: test ids, stories, users, tags, defect ids,
release numbers etc. This information can be passed on
down to the next system or, better still, pass the information
into a DataMart as it flows through your processes. In effect
you are building in enough meta data that other parts of the
system can track back to the original code and requirement,
as set out in Figure 2.

This connectedness and link building will build a rich
enough repository to be able to make informed decisions.
The data gathered must also include details on all parts of

112017 - professionaltester

 Test strategy

Figure 2: Meta data harvest

think about deploying software and can be used to turn what
was once subjective into objectively driven improvements.

Artificial intelligence
There are almost daily briefings from software vendors about
how AI is going to revolutionize the software industry and their
integrated software using the latest AI will take away human
decisions and drive magical speed and quality. The reality is
that AI is only as good as the data that is fed in, what meta
data is gathered, how each factor is rated and whether the
information flows back so AI can “learn” from the past. In a
nutshell rubbish in, rubbish out.

The phased approach - where we gradually bring structure to
what was previously random - is a sensible way to introduce
change and it can then feed into some of the cool AI tech
available.

Monitoring
It pays to start monitoring stuff. And, as ever, start with the
easiest - you may already have good tools to track code
check-ins, link them to specific programmers and your code
quality engine. Joining them up is easy as they already
have integrations.

Once you have the basics done think about the data that is
flowing between the systems. Is it meaningful, in other words,
does it contain enough evidence to inform a decision? Over
time, will the meta data that you gather be able to monitor a
threshold that could inform an action. Spend some time
looking at what happened in the past and see if you have
enough information to be able to detect a similar type of
event before it happens.

testing, including the test data characteristics, virtual
responses, actual results and expected results.

Use testing to build dependency models
At the core of any clever DevOps strategy is the ability to
track dependencies. If I change this line of code, what am I
going to break, what is the risk to my system and every other
dependent system? The problem of technical debt and a lack
of a clear data flow model is massive, and every company
struggles with a clear map of dependent code.

A good technique is to use testing to help join the data flows
together. If you know the input and output of one process
under test, then the resulting output can be the input to
another test later on. Mapping this into your DataMart helps
you bring the threads together, allows you to predict the effect
of a change and lets the AI engines build more accurate
sets of test cases.

Reactive automations
A good intermediate goal is to think about not only
increasing the level of automation but also to get it to react
to changes in the requirements, so a change in a screen, API,
or configuration rule should result in a new set of automated
tests, data and virtual services - all of which are created
automatically.

This sounds like hard work; the reality is you have to do it
anyway so spending time linking the automation to meta logic
is really the only way to go. The meta logic needs to map
business terminology (which is how requirements are worded)
into test assets, including test data (both input and reference)

Cool tech can transform testing
As you build up your software factory, initially from a few
components on the shop floor, and start building up sets of
good data flows that gather rich, relevant and accurate
information then you can start linking in some of the cool
tools around. Good examples we have added are:

• Using sentiment monitoring (linguistic emotion AI) on team
chatter to warn of delays and provide roll ups on the status
of threads.

• Linking combinations and permutations to the test definition.
Before the test runs it automatically expands the test data to
include pairs, triples etc to expand initially to the time and
machine power available.

• Getting cleverer with actual results. Testers rarely test all the
way down to a specific result. In effect tests could be said
to: possibly, probably or have definitely worked. By tracking
actual results over time, you can use clever textual pattern
analysis to look at results for similarities and give a success
score that can inform go / no-go decisions on a release.

• Data tools. There are many that can be easily incorporated
into test dev frameworks, for example: Snapshot roll back,
roll forward; fast comparing databases before and after to
discover what has actually happened not what you think
has happened; synthetic data engines are now very
powerful and can be used to prep data for automation runs;
data cloning allows real cases to be exploded, masked and
moved from production to provide more realistic testing of
defects and edge cases.

• Coverage and model engines are now much easier to
incorporate and provide great flexibility, for example adding
in genetic testing algorithms, constrained triples and
model-based tests is now straightforward.

• Adjusting the depth of testing to levels of risk, if you
know that a change to this module has caused a defect
before (ask the DataMart) then set the risk to high and let
the automation mutate and test more rigorously. Rule
engines such as Nrules and Reactive LINQ queries which
have typically been used for business event handling are
perfect for driving the amount of testing, interpreting the
results and gradually learning from the subjective skill of
the tester.

In summary
It is now time to start driving the agenda if we are to keep
up with the relentless and ever-expanding demand on testers.
The growth of the API means that complexity increases
exponentially, and current processes will struggle to keep up.
Think of version compatibility testing between APIs that can
be called in any order and any one could fail; how do you test
that? In a nutshell it’s time for testers to use their analytical
skills to drive new testing agendas

Huw Price has 30 years of experience as a software inventor and

software entrepreneur and is the founder of Curiosity Software

Ireland.

12 2017 - professionaltester

 Test strategy

Hard lessons learnt about what

works best when deploying test

automation software

by Justin Watts

In the last year Loblaw Digital, the development shop of
Canada’s largest retailer, Loblaw Companies Limited, has
made a step-change in its testing scale and performance.
We recognised that there were bottlenecks in testing and we
set out to examine processes and tools that would help scale
our output. Going through the migration process has taught
us a few lessons about what works best when deploying
test automation software which I’m happy to share.

The challenge
Loblaw Companies Limited is a publicly traded company
operating in over 2,300 locations and turning over CAD $46
billion per year. Loblaw Digital creates and delivers omni-
channel experiences across physical and digital mediums
which include online grocery offerings, e-commerce, loyalty,
financial services and pharmacy products. We operate
within multiple businesses including Click & Collect for
groceries, the award-winning Joe Fresh site for clothing,
beautyBOUTIQUE.ca for cosmetics, Shoppers Drug Mart
for prescription medications and PC Optimum for loyalty.

Our team
We are a 100-strong technology organization and so like
many of comparable size, we are constantly generating code,
there is a need for rigorous end-to-end testing and that
responsibility falls to our test engineers. Test engineering is
supported by our internal tooling engineers and together
these groups form the engineering productivity (EP) team.
Engineering productivity is an ideology taking aim at
traditional QA which shifts the focus from checking
quality to generating confidence.

While refined ideology can be wonderful, it does not
change the fact that as our businesses grow, our team needs
to increase capacity and support running more tests. In order
to scale-up, we went looking for the right tools and processes
to seamlessly manage, automate and interpret the results.

Defining the requirements
Loblaw Digital uses much of the Atlassian stack
including Jira, Bamboo, Bitbucket and Confluence. We
needed automated testing to meet the demands of large-
scale agile development. We also needed processes that
would remove bottlenecks and help scale testing. We
thought long and hard about what we needed and
established that we wanted the following features
from our test management software:

When you have a quarter of a million
results to sift through it's very difficult
to understand what is happening using

traditional reporting techniques.

Don't compromise
on tool selection

132017 - professionaltester

 Test automation

We then spent nearly two years reviewing test management
software that would integrate with Jira and failed to find what
we needed. Regarding integrated automation, feature set and
extensibility, nothing the team evaluated could deliver what
was required. We got to the point where we more or less gave
up looking and toyed with the idea of producing our own tool
and leaving it alone.

Yet only a few weeks later we came across a possible solution
that would supply answers in all the areas that had been
lacking in other products. So we decided to investigate. That
product is Adaptavist Test Management for Jira (ATM) and,
on first examination, it looked to be a completely fresh take
on testing and it met our requirements. We subsequently
implemented ATM over the next nine months and the
results have been very positive.

Along the way, we made sure we got the features we’d
identified as critical for our ideal test automation tool. And
we learned a few things about what you need for a successful
automated testing deployment.

Automated testing can’t perform without
the processes that support it
The Loblaw Digital team is seriously busy, generating an
average of 20 concurrent builds throughout the day. End-to-
end testing of those builds is on a massive scale since the
supported browsers, languages, devices, and user agents
multiplied by our available brands results in 384 permutations

of any given test. As you might imagine, firing test results back
to a test management solution in real time is no small feat.

In addition, we need results to be automatically organized and
pushed to each seam and sprint segment without the
interface getting cluttered or messy. We needed a tool that
would meet all of these needs and one which would support
our test creation, management and results processing at any
timeframe or scale required.

Loblaw Digital is now running around 250,000 tests a day,
which is critical to increasing confidence and speeding up the
delivery of new features to production. Speed matters – you
need to be able to make regression period – the pause where
code is certified for production – we are now 2.5 times quicker
but we believe we will soon make it five times quicker.

The tool should help you with planning
As noted above, at any one time the team is delivering a large
number of features with the work on each split into what we
call seams. The code produced in each seam must come
together as a single product to go into production. We needed
a tool to help us plan and track this, to be able to look at how
a seam is tracking throughout a sprint, get a holistic view of its
health, and plan accordingly. It’s kind of unreal to get that
granularity while also being able to obtain a bird’s eye view.

Your tool should act as an orchestrator – what you want to
avoid is investing in a dedicated resource looking across
seams if you are to be successful. We now have processes
which fundamentally change how we create, run and look
at tests which allows us to focus on more important things.

Visibility of sprint health is crucial
We knew we wanted a tool that would give us visibility of
sprint performance as well as traceability and increased
coverage. We wanted to be able to quickly identify a problem
and say: “We don’t have tests for three tickets in this sprint.
Check the tool and get someone on it.” What you should have
is the ability, at any time, to see whether sprint tests have
been executed and how the results are trending. As we start
to gear up for release, we can now generate a confidence
score and make hard calls if need be.

• The ability to assign tests to a user because it’s
important to know who is going to work on what and
what work is on everyone’s plate.

• First class support for automated and manual testing.
Automation shouldn’t cover everything!

• An extensible API that would allow Loblaw Digital to
use test data in other systems as well as integrate
other systems with the test management software.

• Clear visibility of what was going on at all times.
Particularly, visibility into the health of a given sprint
at any given moment.

14 2017 - professionaltester

 Test automation

You need powerful, usable reporting
When you have a quarter of a million results to sift through
it’s very difficult to understand what is happening using
traditional reporting techniques. We needed a powerful
reporting tool which can, for example, render results on an
X/Y plane to find patterns of execution. Imagine test cases
are your Y axis, and permutations are your X – you can easily
identify if a given test is failing over many environments,
or if a given environment is failing over many tests.

The value of a solution that shares your
work with the whole company
Look at whether test reports and statuses can easily be
shared with anyone who has access to Jira, or whatever
planning and collaborative tool you use, so that it positively
impacts on your entire company. Developers, product
managers and other stakeholders across the business
benefit from getting visibility of results. Make sure it also
informs everyone about the scale and impact of what test
engineering does, giving them more confidence in
your work its value.

A way to make testing enjoyable
Finally, the right tool should make my team and the teams
we interact with happier. It’s probably not a word that often
gets associated with testing but, quite honestly, testing is now
less of a slog – and that increases morale. Getting the tools
and processes right actually makes creating and running tests
a pleasure and nothing we’ve used in the past has done that.
When people see a sea of green in a report, it makes them
feel good. In the long term I think this will have important
benefits for staff retention and the continuity of what the
team can deliver.

Honestly, the best test management tool that I can imagine
is the one that people don’t realize they’re using. We waited
a long time to find the right tool but the big lesson is knowing
what you want and holding out against all the not-quite-right
options until you find the perfect fit

Justin Watts is senior manager, test engineering at Loblaw Digital.

152017 - professionaltester

 Test automation

In an excerpt from

his new book, Johan

Steyn sets out what

testers will need to be

'future proof'

by Johan Steyn

There is a momentous shift taking place in the world of digital
technology. Industries and careers that offered sanctuary to
many professionals for many decades are disrupted in ways
that we may never be able to grasp. Although the news media
and industry forums have been shouting this news into our
ears for a long time, many of us are oblivious to the dramatic
impact of and speed at which we are approaching the cliff
of innovation.

We are entering a new technological world, a world
where only the brave will survive. Who are those
brave souls?

They have the foresight to understand the massive impact
of what is already happening to our world, and have taken

 Feature

16 2017 - professionaltester

The testers of tomorrow
(today)

The tester of tomorrow is a real leader.
Where many in her trade like to work in

the shadows, she operates in the
trenches with her team.

172017 - professionaltester

the needed steps to survive the coming tsunami. Tsunami
is the right word to use here. When a tsunami approaches,
we cannot do much to stop the destruction about to hit our
homes. But we can heed the warnings from scientists and
prepare accordingly. A tsunami moves with great speed
and is usually unexpected. As meteorological technology
advances, we will have more time to organize when the
warning bell sounds. But we will never have enough time.
A tsunami wave moves faster than we can imagine.

The DevOps tsunami
Tsunami is the word I have been using for a long time
to describe the changes in our digital world and technical
careers. Some months back, I published an article on LinkedIn
called The DevOps Tsunami which caused quite a stir among
my peers. Resultantly, many software quality professionals
from a global spectrum contacted me to express their views.

My sincere belief was that my description of the tsunami
would echo what many others in our industry already knew
and experienced. But I was surprised by the amount of
resistance and criticism that filled by Inbox. Many who
made contact expressed a belief that DevOps and the
resultant impact on software quality management were
just a fad – another buzz word like agile or scrum – and
that it would soon disappear like the sound of a jet plane
passing by. They expressed a “been there – done that” view:
they have seen the many changes hitting our technological
world but have experienced little change in their daily lives
as testing practitioners. There are always new tools at our
disposal, new buzz words and new trends. But many are
still conducting software testing in a manual way, and
they seem to be quite happy with that.

The status quo
This comfort zone of the status quo was built on personality
cults and empires that were carefully manufactured in our
corporate environments over the years. These cult leaders
may have been good testing professionals in their hay-day.
But over time, have they climbed the corporate ladder,
nestled in a comfortable career where change and
innovation were the enemy, and where like-minded
minions filled the ranks of the teams they managed.

They have managed to become the go-to software guys
in their corporate divisions and are the holders of the keys
to quality. But to justify their existence, they keep their

stakeholders – especially those with the funding on which
their kingdoms depend – at ransom. Concepts like automotive
innovation, cognitive technology and even the expertise of
vendor partners are avoided at all costs. Innovation, the reuse
of assets and the employment of disruptive thinkers are not
welcomed. These things will cause their houses built on
sand to crumble.

What does the tester of tomorrow look like?
The clarion call goes out to the software quality and testing
community. What we desperately need TODAY is an army of
the “testers of tomorrow”. The call goes out to those testing
professionals who embrace the coming tsunami with all the
change and uncertainty it brings. Nothing would have
prepared you for this.

First of all, it is a testing professional with good technical
skills. This is not someone who is bound to a specific tool,
framework or methodology. This adaptable tester allowed
himself to be exposed to a variety of the tools of his trade.
Exploration, hunger for growth and innovation is the name
of his game. The tester of tomorrow is a real leader. Where
many in her trade like to work in the shadows, she operates
in the trenches with her team. She drives by her example of
commitment and dedication and she sees the strengths in
her team not as threats, but as those essential elements that
will make her successful, too. She is always keen to promote
others and to give praise where it is due.

The tester of tomorrow is a commercially savvy leader. He
understands that software quality management and testing
is a means to an end. He always and foremost takes into
account the business objectives of his customers and
stakeholders. He spends time and effort with his team
to ensure all are aligned with the business goals of their
organization, and aligns their testing approach and planning
to these. He is measured and measures his team on the
successful realization of business goals through software
quality management.

 Feature

never be able to entice a hard-core developer into a career of
software testing. The tsunami will force a change here. As we
wake up to the tsunami-hit world around us, and as the actual
role of software quality is recognized in a world moving at a
fast pace that introduces massive risk, the tester of tomorrow
will find her real place.

I see a world where those hardcore, weirdo pony-tail
developers can be enticed to focus on a career in software
quality management. In this world, their technical and
development skills will make them the ideal candidates
to test software.

Dear reader, welcome to a brave new world! Will we find
you sinking or swimming as the tsunami hits?

 Feature

18 2017 - professionaltester

The tester of tomorrow is a shrewd political navigator.
She knows that both her and her team’s success rely on
her political capital within her organization. She makes sure
that she is connected to the relevant influencers and that she
has their ear. She knows that gossip and second-hand
information within the corridors of the workplace can scuttle
her success. She knows how to promote herself with skilled
manoeuvring, and she always ensures that the achievements
of her team and the credit due to them is visible to her
stakeholders. She recovers from failures gracefully, knowing
how to dust herself off and tackle the failure with ownership
to exceed expectations.

The tester of tomorrow is a reader and a learner. Learning
never stops for this leader. He is on the cutting-edge with
technological advances and innovation because he attends
conferences, participates in webinars and spends time
reading. He is not a lazy information gatherer. He is also
well connected with his peers in the world of software
quality. He is a voice worth listening to, a thought-leader.

The tester of tomorrow lives and breathes software
quality management. She is not merely a tester at the end
of the cycle. She is not seen as the “stepchild of the SDLC”.
Her voice and influence are heard from the very outset of a
new project or feature being planned. Her peers welcome
her opinion and shape their planning around her guidance.
She embodies “shift-left” as she skilfully practises her
craft throughout the software development and
release process.

The impossible dream?
What I have just described may seem like a far cry from
the reality that most quality professionals experience. The
growth of a plant in a pot is restricted by its environment.
Most organizations – whether end-users of software services
such as banks, or even the supposed experts like global
vendors – are not aware of or prepared for the tsunami. Your
career ambitions as a tester of tomorrow may not be realized
where you currently work. Many organizations still see
software testing as a necessary evil to be avoided at all
costs, or at least as a grudge purchase like short-term
insurance.

Traditionally, our peers in the software world looked at
testers as second-hand citizens. Testing was seen for those
who did not “make the cut” to become developers. One would

Johan Steyn is senior manager of enterprise quality assurance at

Nedbank and author of ‘The business of software testing’. For more

info visit Johan’s web site www.thebusinessoftesting.com

The opinions expressed here are the author’s own. It does not

necessarily reflect the views of any of the organizations he is

currently or has previously been involved with.

Visual testing adds value to tests

by automating some of the checks

normally carried out by manually

testing

by Viv Richards

them, I’d like to share our experiences to date and the ways
in which we’ve been able to work around them to start building
a solid and valuable visual test framework.

How valuable are the tests?
Figure 1 shows a basic example of a type of test I’ve seen
written. The tester set out with good intentions and invested
time to ensure that should the form change, they would be
able to capture the change using their test.

Late one Friday evening the support team got a call, the
customer could no longer use the application as the send
button was not on the screen. The support person imme-
diately checked the tests to check for any failures but was
confused when they noticed that all the tests had
passed… what had happened?

In Figure 2, you can see that the issue was that the send
button had rendered on the form so the asserts all passed,
a css change had been made and so the send button had
become hidden behind one of the input text areas.

How good are you at spot the difference?
Before we go much further, how good do you think you are at
finding differences? Below there are a number of differences
between the two images. Once you think you’ve found them
all continue reading. See Figure 3.

How many differences did you find?
They’re flagged in Figure 4 but it is often difficult to know
where they are and to know when to stop checking, and
to have confidence to know we’ve found them all.

Can we add more value to our tests?
Given the spot the difference example, we asked ourselves
if there is a way in which we can add more value to our tests
by looking at ways to automate some of the checks we’d
normally carry out by manually testing?

What if you could simply assert your base image of an
element or web page matches a snapshot of an element
or web page based on how it currently looks?

Visual testing
When looking at visual testing, there are many options out
there, again similar to test automation tools it depends on
where, what and how you need to test. Do you want it free,

Using a visual approach can reduce the
amount of lines of code required for an

automated test dramatically

Spot the difference:
automating visual regression testing

192017 - professionaltester

 Test automation

This feature explores how visual testing can add another tool
to your belt as well as highlighting issues which teams may
face when implementing such a framework.

Most now accept that test automation has specific advan-
tages for improving long-term efficiencies but when it comes
to implementation, there are many hurdles and it can stop
progress in its tracks.

Whilst our visual framework is still in development, and we
are still facing many challenges due to the broad range of
products we offer and the way in which we develop and test

can you afford to pay? Do you need a GUI or are you
comfortable to write some code? How do you want to be
alerted of differences when they are found?

When looking at visual testing at my current employer, we
were unable to simply use another offering. Many options
didn’t work straight out of the box, or contained lots of bloat
which would just add an extra overhead to the maintainability
of the tests. There had been a massive investment in our
automation frameworks and lots of investment which had
been made in upskilling developers/testers in C# and
Selenium and possibly looking at new languages or
frameworks could mean a steep learning curve. The main
issue for us was that we needed it to fit in with our current
automation framework, and so we had to create our own
visual testing framework.

Reliability
Whilst developing our framework, it quickly became apparent
that the rendering from different browsers would often cause
tests to fail. For example, if we were to take

a base image of our homepage in a Chrome browser and
then run our test in Firefox to ensure the homepage hadn’t
changed, the test would fail due to the browser adding
additional padding to some elements. The pink boxes in
Figure 5 indicate areas where differences were found
by our framework.

Execution speed
When comparing a visual test of the contact form
compared to the test in Figure 6, where we asserted
each element’s text, we noticed the visual tests executed
far quicker. The test framework simply navigates in a web
driver to the desired page, takes a snapshot which is held
in memory and then byte by byte compares the image
to the base image stored locally or wherever you’d prefer.

Maintainability
Using a visual approach can reduce the amount of lines of
code required for an automated test dramatically, as shown in
Figure 6. As an example, a previous test I’d been asked to
write was 500+ lines, when writing this using the visual

20 2017 - professionaltester

 Test automation

Figure 1: A basic example of a type of test that is written and passed

Figure 2: An error is Button hidden due to a css change

framework, we had to start allowing a certain amount of tole-
rance during comparison. A common issue we encountered
was that the colour would sometimes be slightly off (a slightly
different shade) depending on the machine taking the base
image, or taking the comparison image. Whilst this wouldn’t
be a problem on the machine which would always run the
tests, it would cause issues when developers would run the
tests locally. So, we had to introduce a tolerance for the 256
different intensities. Whilst this no longer was a single pixel
perfect we found it accurate enough to still enable us to
assert that layouts were as expected, as well as checking
that wording was correct and elements were being
rendered as expected.

Base images
When initially creating the framework, we decided it would
be a good idea to manually take base images and should we
need to test a specific browser, we would take a base image

212017 - professionaltester

 Test automation

Figure 3: How good are you at spot the difference?

Figure 4: Errors can be easily missed

framework this was just four lines of code; one line to specify
the base image, one line to specify the URL to compare, one
line to do the compare and an assert, and that’s it!

Feedback
One of the fantastic things with the visual testing framework,
and specifically the one we designed, was that whenever a
test would fail, a copy of the original image is created and
when differences are found, a pink box is drawn to quickly
identify the areas of change.

Accuracy?
During development of the testing framework, and whilst
running spikes using various other visual testing tools, they
were all pixel perfect. The frameworks were able to detect a
single pixel difference, as seen in Figure 7. However, after a
few months of testing and asking other team members to help
out, the tests started to fail. We found that within our visual

of it i.e. the homepage in each required browser. This,
however, became quite difficult to manage and so we changed
our approach. Instead, we had the framework automatically
check which web driver we were using, check if a base image
already existed for the page and browser, and if not to create
it automatically and tell us that it had been done. Now when
we run a test in any browser and the base image doesn’t exist,
it creates it for us. We have a helper if we want to override the
base image, or we can simply just delete it and when we run
the test, the base image will be created automatically for us.
This reduces the need for developers to manage the
base images.

Screen resolutions
During early stages of the visual testing framework,
I was asked to demonstrate the framework to the team, but
all did not go to plan. I’d created the base images on my local
machine but then for the demo had a machine with a smaller
resolution. When I ran the tests they all failed as the browser
had rendered slightly differently to what was expected

because of the resolution. A work around for this was to
set a height and width for the web driver and not to set it
maximized. In this way, whenever the web browser was open
to take images it would always be displayed in the expected
size rather than depend on the screen resolution of the
machine the test was being run on. See Figure 8.

Storage
When running the tests, depending on the screen resolutions
you set, the number of pages you are testing and the number
of browsers you are testing in, the base images can quickly
start to fill up the disk on the computer running the tests.
Whilst we are currently only running the tests locally, and
saving the images on a local disk, a database or online
storage longer-term would be a preferred option.

Dynamic content
One of the big challenges for us has been dynamic content,
often our web pages display a logged-on client name or per-
haps a news feed. One of the ways we’ve been able to get
around the issue is to create a helper which simply blankets
over the dynamic elements, as shown in Figure 9.

Visually checking documents?
Another quite interesting challenge we’ve had, is to
investigate the ability to visually check documents. We deal
with a large number of items and it can be very difficult, under
tight timescales, to visually check formatting, spelling, layouts,
colours on a multi pages document. You can use a third party

22 2017 - professionaltester

 Test automation

Figure 5: The pink boxes flag areas where differences were found
 by our framework

Figure 6: Visual testing can dramatically reduce the amount of lines of code required for an automated test

232017 - professionaltester

 Test automation

such as Aspose to convert a PDF page or pages to images
and then run them through the visual testing framework to
quickly check for differences.

An exact copy?
Even with the ability to cover dynamic content, it’s not always
desirable to cover all elements of a page. What if you only
want to check a small portion of your page, perhaps just a
button to ensure it still matches the customers set branding?

By using visual testing, you can not only test that a whole
page matches what you expect it to but it is possible to
check an individual element. By specifying an element
by CssSelector or ID you can take a base image of that
individual element and then run tests to check for changes.

Want to find out more?
Whilst there are many fantastic free and paid for visual tools
and frameworks out there, you can pick up a free copy of the
framework we are developing over on GitHub and let us know
what you think. https://github.com/vivrichards600/
AutomatedVisualTesting

Figure 7: Even a single pixel difference can be identified

Figure 8: Setting a height and width for the web driver ensures images will be displayed in the expected size

Figure 9: Dynamic content can be blanketed

Viv Richards is a test engineer at Vizolution, a blogger and a

community bumble bee. He is a CodeClub volunteer, organizes

South Wales' largest agile and developer conference (SwanseaCon)

and is co-organizing DDD Wales.

class= „SandboxRoot is-touch env-bp-min“

www.professionaltester.com

Happy
NewYear

With thousands of subscribers,
make sure that your solution is

showcased in 2018.

On behalf of our contributors and our staff
we wish you a

E s s e n t i a l f o r s o f t w a r e t e s t e r s
TE TER

