
Managing
manual
testing

February 2011 v2.0 number 7£ 4 ¤ 5/

E s s e n t i a l f o r s o f t w a r e t e s t e r s
TE TERSUBSCRIBE

It’s FREE
for testers

Including articles by:

Derk-Jan de Grood Valori David Yuill HP Erik van Veenendaal Ashwin Palaparthi AppLabs
Marek Kucharski Parasoft

Bogdan Bereza-Jarociński VictO Mohamed Patel Equiem George Wilson Original Software

http://www.professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt7-ranorex

TE TER Managing manual testing

The term manual testing, like automated
testing, means more than just test execution.
The idea that testing could ever be done
without human intervention is dead: all non-
trivial software models or at least interfaces
with reality, yet can never match its
complexity. That is why whenever people's
interests are to be trusted to software, people
will be needed to adjust testing to protect
those interests better. This issue of
Professional Tester is about making and
controlling the adjustments.

As several of our contributors have noted in
different ways, a key challenge of manual test
execution is documenting it for repeatability
and incident reporting. Using advanced

Editor
Edward Bishop

editor@professionaltester.com

Managing Director
Niels Valkering

ops@professionaltester.com

Art Director
Christiaan van Heest

art@professionaltester.com

Sales
Rikkert van Erp

advertise@professionaltester.com

Contributors to this issue:
Bogdan Bereza-Jarociński

Mohamed Patel
George Wilson

Derk-Jan de Grood
David Yuill

Erik van Veenendaal
Ashwin Palaparthi
Marek Kucharski

Publisher
Jerome H. Mol

publisher@professionaltester.com

 Subscriptions
subscribe@professionaltester.com

Contact

3

From the editor

We aim to promote editorial independence
and free debate: views expressed by
contributors are not necessarily those of the
editor nor of the proprietors.
©Test Publishing Ltd 2010.
All rights reserved. No part of this
publication may be reproduced in any form
without prior written permission.
“Professional Tester” is a trademark of Test
Publishing Ltd.

4

13

15

16

screen recorders such as BBTestAssistant
(see http://www.bbtestassistant.com) is a
fast-growing approach and we have five
licences, worth $199 each, for Blueberry
Software's innovative and popular tool to give
away. They will go to the first five readers to
email me at editor@professionaltester.com
identifying the story, book, TV programme or
film to which each article headline in this
issue refers.

Edward Bishop
Editor

Professional Tester is published
bimonthly by Test Publishing Ltd.

IN THIS ISSUE
Managing manual testing

Test process improvement

Test data

Feature

Robot, I
Bogdan Bereza-Jarociński proposes a new kind of tool

The edge of human
Hands-on performance testing with Mohamed Patel

We can remember it for you wholesale
Marek Kucharski on keeping manual execution traceable

Now wait for last year
Derk-Jan de Grood wants testers to be busier

Use the force better, Luke
David Yuill introduces HP Sprinter

Equality Unconquered
Power to the people, says George Wilson

To maturity, and beyond
TMMi has recently been completed. Erik van Veenendaal tells us what is new

Better than life
Ashwin Palaparthi explains how AppLabs fabricates rather than prepares test data

Test library
Reviews of three new testing books and BSI's new web accessibility standard

Visit professionaltester.com for the latest news and commentary

PT - February 2011 - professionaltester.com

19

6

10

Managing
manual
testing

SUBSCRIBE

I ’s FREE
t

e e
for t st rs

18

22

Many articles in Professional Tester
are concerned with improving automated
dynamic test execution, because the
potential benefits of doing that are well
understood. However in practice a great
deal of test execution is still done
manually.

Some believe that will change, and more
and more testing will become automated.
They may be right: computers can be
better than people at executing tests
correctly, repeating tests consistently and
checking results accurately, all of which
are of course vital to effective retesting
and regression testing.

Others think there must always be a place
for manual test execution – for exactly the
same reasons:

sometimes inconsistent execution,
inadvertent or not, increases coverage
and therefore potential to detect
defects which automated execution
would miss

sometimes people notice anomalies
which a tool has been configured,
wrongly, not to look for or to ignore
because it was not foreseen

automated execution can validate
software, but a person can evaluate it:
he/she adds business knowledge,
understanding, intuition, imagination
and empathy with users a tool cannot
emulate

the act of executing a test can lead a
person to create additional valuable
tests

when time and resources are short,
people can be asked to attempt the
best testing possible under the
prevailing conditions. In contrast tools
usually have a fixed preparation and
maintenance overhead which must be
paid before they can be used to any
advantage

when part of a test cannot be run as
written for an obvious reason, such as
a minor change to interface design, a
person can work around (when
permitted, with care and raising an
incident against the test) to complete
other parts whose results may be the
more important at the time. However
trivial, such an obstacle usually
stumps automated execution
completely.

Some of these limitations of automation
may diminish in the future: but few doubt
that in the present at least some manual
execution is essential.

So the variation in test execution and
checking introduced by people is
sometimes desirable, sometimes not.
When it is not, how can we eliminate it? I
suggest that the answer is by defining the
tests more explicitly. Much of the
weakness of manual execution comes
from its association with manual test
preparation. Even when standards and
templates are used, test specifications
have some room for interpretation. If that
could be eliminated, manual testers could
still use them as a basis for useful
variations in both the actions taken and
what they look for, but could be trusted far
more to execute them correctly and not
miss any significant discrepancy when
needed. All the advantages and almost
none of the disadvantages (the exceptions
being speed and use of human resources)
of manual testing would be realised.

by Bogdan Bereza-Jarociński

Robot, I

What if the generation of tests for
manual execution were automated?

Managing manual testing

PT - February 2011 - professionaltester.com 4

Bogdan Bereza-
Jarociński envisages
an approach which
reverses current
common practice

in some very ergonomic tabular or
graphical form, include visual cues, and/or
communicate with the person executing
some other way. There is an opportunity
here for great design but it must not go too
far: for example, having a person repeat
inputs shown in a sequence of images, or
even a movie or similar, might take too
much of his or her attention away from the
test item.

Given the definition of such a language or
other description system – which because
of its purpose would need to be both
simple and small – it should be quite easy
to write a “translator” program that
generates it from the test specification
language.

Ideally, it would be possible to define new
tests directly using the “execution
language” or system too. It would be
extremely useful in incident reporting and
retesting when an execution-time variation
of the procedure, or a new test created in
an ad-hoc or exploratory way, detects an
anomaly, or when it is desired to add such
a test, passed or not, to a regression suite.
Depending on the form the language or
system takes, an extra interface or
“development kit” might be necessary to
achieve this, and/or syntax checking tools
could be used to verify and debug
“handcoded” tests.

Finally, the execution procedure could be
used also as input for automated
generation of tests for automated
execution, on the same principle as
keyword-driven automation methods. Thus
the same tests could be run manually or
automatically as most appropriate for the
current objectives. Doing both and
comparing the results, such as resulting
change to back-end data etc, could be
interesting too: it may help to reveal some
subtle and dangerous defects such as
timing issues that either manual or
automated execution alone cannot

Managing manual testing

5PT - February 2011 - professionaltester.com

Test description – telling a person how
to execute the test
Manual test preparation usually involves to
some degree the use of natural language.
This creates a lot of problems: different test
analysts have different description styles;
different organizations use different
description guidelines; and different testers
may understand a description differently.

Using a formal language at this stage too
should eliminate the first two problems but
would only change the third. The formal
languages used to specify tests are
designed for machine, not human,
readability. Executing tests expressed in
them manually would be difficult,
painstaking, error-prone work. The
keyword-driven approach, designed to
make it easier to create and maintain
automated tests, may be a partial solution,
but the person executing would need to
either know, or make constant reference to,
the definitions of the keywords. Again this
would probably be excessively demanding
work in most circumstances.

So a second language is needed: more
abstract, easily readable but still formal
enough to define detailed procedures with
no ambiguity. It may resemble natural
language, express the actions and inputs

Could this be achieved by using a tool to
create consistent, unambiguous tests for
people to execute?

Test specification – defining what the
test is
To automate the creation of detailed test
procedures, the test cases (pre-conditions,
input, expected output and post-conditions)
must be described unambiguously. Most
formal languages used to define test cases
are developed and used locally within an
organization or even for a specific project.
Some tool vendors provide basic
frameworks for such languages, for
example HP's Business Process Testing,
which enables the creation of test cases as
blocks of words which can then be
manipulated graphically. They are not very
much like programming languages, but
more like business modelling languages,
so that business rather than technical
people can learn to write test cases and
test scenarios using them.

Tailored languages can be made 100%
suitable for the purposes of an
organization and project. On the other
hand, building, teaching and learning such
languages is expensive, and they tend to
hamper collaboration, so a standard
language for this purpose would be
desirable. Perhaps one could be based on
a meta-language such as BPML or UML,
or adapted from a language used to
describe test cases such as TTCN or
LabVIEW?

Figure 1: routes from test descriptions to executable tests – and back

Bogdan Bereza-Jarociński is a testing consultant, speaker and trainer and a long-time
contributor to Professional Tester. He is the proprietor of VictO (http://victo.eu)

VARIAT SONIN
EW

 TESTS

Translator

Keyword-based
test generator

Automated
execution

Manual
execution

Test procedures
described in

test execution
 language
or system

Test cases
described in

test specification
language

Exploration

TEST
RESULTS

TEST
BASIS

Specification
or

model

Tester’s
expectation

and
understanding

After many years as a performance
tester I have learned to expect the
unexpected. While most other testing
disciplines aim for repeatability and
predictability, performance testing has
always been about ad-hoc problem
solving. We operate not on the clean,
well-lit superstructure of user interfaces
and architecture designs but in the very
murky depths. These days even most
developers don't know what goes on at
low level as they assemble their
applications from dinky components
and flashy development kits.

Constructing effective test scripts from
protocol transactions requires peering
into dark recesses, and whatever
bizarre things are found must be
simulated by many replicants, using

complex logic and data handling, each
behaving realistically but differently:
simple cloning usually won't do. While
functional testing may be (very slowly)
moving towards standardization,
performance testing is diversifying. It's
been a long time since I have worked on
two similar projects. Rather, it's
amazing how different each new
situation – ie application and testing
requirement – is from all the others I've
seen before.

The power to change
So increasingly, assuring performance
requires not systematic skills or
prescriptive tools, but extreme flexibility.
In order to deliver the testing required,
the tester must be able to adapt and
innovate methods and to override and
extend automated functionality. At
Equiem we use and consult on many
performance testing tools and are often
asked which we prefer. On a simple
comparison of features, there is often
little to choose between them: some are
slightly stronger than others in various
areas, but not importantly so. A good fit
with development and other testing
technologies in use can be a factor too.
But to us the vital thing is extensibility:
the capacity to create the behaviours
you need, rather than paying for many
built-in ones you don't. On that criterion,
the leading tool is Facilita's Forecast.

Test implementation using actual
application code
Using Forecast's capabilities to the full
requires coding. We don't see
disadvantage in this as we believe it is a
skill the modern performance tester simply
must possess. For example, DLLs, JARs
or .NET assemblies can be associated
with custom virtual users. The external
code then becomes available for use
within the scripts: the developer's, or third-

by Mohamed Patel

The edge of human

Applications are mutating in
unpredictable ways. Performance
testing must be able to adapt

PT - February 2011 - professionaltester.com 6

Mohamed Patel
tells us about his
favourite tool

Managing manual testing

According to our recently published World
Quality Report 2010-2011, in co-production
with Sogeti and HP, investment is shifting
towards building new applications1, which
means process improvements are necessary
in order to cope with the increasing workload.

One way to achieve the necessary improve-
ments is using the Test Process Improvement
model - TPI NEXT®. Developed by Sogeti, TPI
NEXT® is our world-leading model for providing
an objective step-by-step guide to business-
driven test process improvement.

How the TPI NEXT® model works
The TPI NEXT® assessment is used to measure
your testing process. How mature is your
organization at a particular moment? Which
business drivers need to be addressed?
Interviews and accelerators assist in creating
a target maturity matrix. This provides an
overview of the Key Areas that should be
improved in order to reach a higher maturity.
These are prioritized and the corresponding
improvements and implementation support
is defi ned. This approach has already been
successfully applied at large international
clients such as Air France-KLM. General
conclusions drawn from these assessments
supports implementation of the model in
future assessments.

Conclusions drawn from carrying out TPI®
NEXT scans
n The TPI NEXT® model is highly suitable for

tailor-made scans for organizations and
businesses.

n Ensure that the people being interviewed
know up-front that this is not an audit –
people themselves are not being judged!

n TPI NEXT® scans require thorough planning,
especially when there is a short timeframe
and stakeholders reside in different countries.

n Implementing the improvements after the
TPI NEXT® assessment needs attention and
commitment from management.

Beyond TPI NEXT®

Capgemini has extensive experience
in providing a clear visualization of the
improvements and implementation that
result from a TPI NEXT® assessment. By
implementing the conclusions from TPI
NEXT® scans and clarifying the roadmap
to our clients, it becomes easier to evaluate
and check the necessary improvements.
This approach combined with the full
commitment of the Capgemini team has
proven to be especially appreciated by
our clients.

Spreading the experience
At Capgemini in the Netherlands, the TPI
Expert Group is currently developing courses
to help clients put our experience into their
practice. Researching and combining different
test process improvement models and best
practices together with Capgemini’s Quality
Blueprint (which provides a comparative
benchmark against the industry standard) lead
to practical support and guidance throughout
the improvement process.

For more information about TPI NEXT® and the
activities of the Capgemini TPI Expert Group,
please contact us at testen.nl@capgemini.com.

¹ http://www.uk.capgemini.com/insights-and-resources/by-

publication/world_quality_report_2010__2011

Is your test process ready to cope with
increased workload?

www.nl.capgemini.com

3T-014.10_Advertorial_12th Nov'10_V2.indd 1 11/12/2010 3:39:29 PM

http://www.professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt7-capgemini
http://www.uk.capgemini.com/insights-and-resources/by-publication/world_quality_report_2010__2011/

causing the script always to amend more
fields.

Now, suppose the form is designed to
change depending on the data: that is,
it can have more, fewer or different
fields depending on the
customer type and/or history.
With many tools, it is
necessary to determine every
possible variant of the form –
which itself can be difficult
or impossible – and create
specific scripts to handle
each. With Forecast,
provided the fields they
amend are still present,
scripts always execute.
Values of all other fields,
no matter what they are,
are captured when the
form is served and sent
automatically when it is
submitted

party, libraries can be used to encode and
decode data during testing without
needing access to proprietary or otherwise
unavailable source code.

Object-oriented scripting
The class structure of the scripts enables
the tester to override any of the base
methods, introducing his or her own logic,
conditions and validation. I used this
recently when the application under test
required client-side timestamping and pre-
validation of data before every HTTP
POST request. Coding this once, in the
custom virtual user, means it is
automatically implemented in all requests
sent by all scripts, including ones yet to be
created. These concepts are of course
nothing new to OO programmers, but
many other performance testing tools try
to hide the real code behind user
interfaces or simplified procedural
languages that serve only to restrict what
you can do.

Global editing
Heavily UI-based tools can be very
cumbersome, requiring user input for
every data item to be correlated or
modified, making for a great deal of error-
prone editing. Instead, Forecast has a
wizard to define script generation rules.
When a pattern, eg a header type, URL or
specific document content is detected, the
rule inserts code for correlation, checking,
extraction, header creation and so on.
Rather than editing the scripts, one edits
and extends the rules: the scripts are then
regenerated according to the new rules.

Dynamic form handling
Imagine a large form with many fields,
perhaps containing details of a retrieved
customer account, and a test that requires
one field to be amended before the form is
submitted. In other tools, the script
contains code to populate all fields. A
Forecast script refers to the one changed
field only, making it easier to edit, extend
or re-use. The other field inputs are
correlated automatically with the values
embedded when the form was served.
They are in the script only as comments: if
desired, this behaviour can be changed,

Mo Patel's 25-year IT career has included successful performance testing of many
complex applications in the retail, banking and public sectors. He is a founder and
director of Equiem (http://equiem.com) which specializes in highly tailored performance
testing services. For more information about Forecast see http://facilita.co.uk

PT - February 2011 - professionaltester.com 8

Managing manual testing

For testers and test managers
who want to enhance their

knowledge of test management

In their strivings for operational efficiency, quality and to satisfy growing government regulation, the number
of companies that test software professionally is growing.

In “Advanced Test Management” testers and test managers will find :

 - an overview of various approaches and techniques
 - numerous examples, tips and tricks, tables and illustrations

The book provides a clearer and more effective manual for a well-oiled testing approach. This knowledge
allows you to arrange custom software testing and integrate it in any business environment.

The book ties in with the knowledge needed to gain the ISTQB Advanced Test Management Certificate in
Software Testing. ps_testware is an accredited ISTQB Foundation and Advanced training provider.

knowledge of test management

In their strivings for operational efficiency, quality and to satisfy growing government regulation, the number

For a detailed table of contents: www.pstestware.com

HOW TO GET IT?

You can order this book for 44,95 EUR*

via www.pstestware.com or get it for free

when attending our

ISTQB Advanced Test Management training.

* (excl. VAT and shipping costs)

&RnVXOWanF\ 0anagHG
6HrYiFHV

0anagHG
6WaIIingTraining

ps_testware is a leading company specialized in software
testing, software quality and quality assurance. With offices
in Belgium, The Netherlands and France, ps_testware pro-
vides services in all matters of structured software testing and

related fields.

http://www.professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt7-pstestware

There is a Polish saying that “only a cow
does not change her mind”. She is happy
just to chew grass. Parasoft, a company
known for advanced tools, has been like
that cow for years: we thought that
dedicated testers would eventually be
replaced almost completely by tests

created by developers and executed
automatically overnight. We've changed
our mind. We still believe in automation,
and we use our products to automate a
very high proportion of our internal testing.
But we now acknowledge that sometimes
manual testing is the best, or even the
only, option and have extended our ALM
platform, Concerto, to embrace it: making
it as traceable, auditable and integrated
with development as automated testing.

Visibility makes faster work
Figure 1 shows a requirement in Concerto.
The tabs at the top summarize and give
access to detailed information about the
work done so far. To implement the
requirement, 32 development tasks were
identified (these include all development
work, not just coding); 37,641 lines of code
have been created or modified; two
automated tests have been run and
detected no defects; and nine manual
tests (shown under the Scenarios tab)
have been run, of which four have failed.

Thus the people executing the manual
tests have visibility of what everyone else,
including developers, has already done:

by Marek Kucharski

We can remember it
for you wholesale

To stay on track, trace

Managing manual testing

PT - February 2011 - professionaltester.com 10

Many were surprised last autumn when Parasoft
embraced manual testing. Marek Kucharski
explains what has changed

Figure 1: A requirement in Concerto Project Center

manual or automated. The steps taken
and their outcomes are recorded: they
demonstrate to the tester what is
considered correct behaviour, far more
quickly and clearly than a formal
description. This avoids
misunderstandings and helps the tester
know what is and is not an incident. The
tester adds additional scenarios, based or
not on the ones provided by development.

Traceability makes less work
Then, the loop is closed: when a defect is
detected and fixed, Concerto enables
traceability of test to requirement,
requirement to code, and defect to
modification. It therefore knows at all times
exactly what tests, both manual and
automated, need to be re-executed for
retesting and regression testing purposes
(figure 3). This information enables
enormous savings in what is by nature a
time-consuming activity. Finally, a static
analysis rule can be created to prevent the
construct(s) that caused it being repeated
anywhere else. Collaboration at that level
between development and QA makes future
expensive defects simply not happen.

Managing manual testing

11PT - February 2011 - professionaltester.com

Figure 2: manual test scenarios being managed and edited

Figure 3: retests recommended due to code modification

unit testing, static analysis, regression
coverage and everything else. This input
to manual testing helps to target it
precisely, making it easier and more cost-
effective. When a developer completes a
task, he or she creates a test for it,

PT - February 2011 - professionaltester.com 12

Managing manual testing

Tracer makes traceability work
These facilities are available even when
code is created by an external
development organization which is not
using Concerto. Tracer identifies the
methods and objects used when each test
case is executed, mapping test cases to
code, completing the traceability
information needed to manage and report
(figure 4) the entire development and test
effort, including manual testing,
comprehensively

Marek Kucharski is CEO Europe of Parasoft. For more information about Concerto see
http://parasoft.com/concerto

Figure 4: reporting on manual testing

E s s e n t i a l f o r s o f t w a r e t e s t e r s

TE TER

Software testing is usually on the critical
path. Most testers feel the burden of the
anxiety and impatience of managers and
stakeholders, who expect testing activity
to reflect it, and often express surprise to
find this is not the case: when the storm
everywhere else is reaching its height, the
testers… wait. Why, when even small
delays can have severe impact on the
project timeline? Because while test
execution is given high priority, providing
the things needed to do it is not. Not
having those things at the right times (i)
delays the start of test execution; (ii)
makes test execution take longer; and (iii)
makes testing less effective and
dependable by requiring more
assumptions to be made.

Good test managers try to emphasize the
advantages of early involvement and
working in parallel with development, so
that test execution can begin immediately
and be done efficiently whenever work
products are released. Unfortunately those
concepts are still not well understood – or
are not taken seriously – by other leaders,
whose concern with project timescales
tends to make them concentrate on
removing any potential cause of delay to
development, forcing more of the testing
work to take place later, actually causing
worse delays.

To help managers to reduce time-to-
market, we as testers need to get the
measures required for better, more timely
testing higher on their agenda. Trying to do
this by making them understand testing
better has failed. We might achieve more
by focusing instead on what they do
understand, highlighting the project issues

that cause delay to testing and what might
be done to eliminate it.

I recently carried out questionnaire-based
research with testers in multiple industries,
aiming to discover the causes of the
wasted waiting time. This article discusses
the three cited most often, and suggests
approaches to arguing for project change
that might help to mitigate them. That
should keep testers busy for more and
unduly pressurized for less, of the time,
helping to bring about what everyone
wants – quality products delivered faster.

Unavailability of test environment
Test execution time is typically greatly
increased because the test environment is
unavailable, unstable or unusable.

This is a familiar but still common situation
for testers. I recently worked on a large
project with a one-week release cycle.
Unfortunately “release” meant only
delivery of code. The deployment and
configuration required to enable
meaningful test execution and results
checking took several days, reducing
testing time to two or three days a week.

Unstable and slow environments are also
commonly experienced. Both cause very
significant delay and risk. In the first case,
the environment crashes before the test is
complete so it must be repeated
unnecessarily. Casual testers – ie
stakeholders and developers – who
“explore” software often do not understand
that “carrying on where you left off” is
usually impossible and always dangerous
in systematic testing. As well as wasting
their time waiting for responses, sluggish
interfaces affect testers' concentration and
lead to mistakes.

Discussions with project managers
regarding test environments tend to be rare

by Derk-Jan de Grood

Now wait for last year

The things that delay testing
and how to avoid them

Why are we waiting?
Derk-Jan de Grood
finds out

Managing manual testing

13PT - February 2011 - professionaltester.com

To create and justify a strategy that will not
fail because of waiting caused by unsafe
assumptions, ask management:

expressed quantitatively (eg on a scale
of 1 to 10, where 1 is a blank sheet of
paper and 10 is the complete, perfect
design), how detailed can we expect
documented requirements to be (i)
before the testing project begins; (ii) at
management-defined milestones in the
critical path of the development
project?

how accurate can we expect
documented requirements to be, as a
proportion of the final features of the
accepted product, at those critical
milestones?

is the information needed by the
various project participants, including
testers, identified and agreed before
system definitions are documented?

where detailed documentation of that
information is not to be available, are
information sharing activities to replace
it planned?

Other reasons testing time is lost
The research identified four other common
issues that force testers to wait. The full
results and many more suggestions are
included in a comprehensive checklist,
intended to offer a fresh approach to
opening and maintaining productive
dialogue. Its questions align with the
concerns and areas of expertise of project
management, helping to eliminate time
wasting from any testing effort. The
checklist is available free at
http://www.smartest.nl/toolstemplates/
procesverbetering

Delay in fixing show-stopping bugs
Testing aims to find the most important
bugs first, but those bugs are often
showstoppers which cause testing to be
suspended until they are fixed. But, how
long will that take? It's hard to say. Bug
fixing is seldom a well-managed process.
It's important to ensure that management
realises and takes into account the fact
that while incidents are being reported,
reproduced, discussed and resolved,
testers will often be waiting.
When discussing this problem with
management, ask the following questions:

is the incident management
mechanism sufficient and are all who
should using it correctly?

if an incident occurs and a tester is
unsure whether to raise it, what should
he or she do?

does the project plan allocate sufficient
time for incidents to be resolved
(investigated and, if necessary, fixed)?
Do its estimates take into account
quality, complexity and commenting of
code and availability of the people
needed to resolve incidents?

Lack of sufficient information about the
system
Every tester understands the importance
of getting system definitions
(specifications, requirements, use cases,
stories etc) as early as possible. If they are
late, test preparation is made difficult,
causing subsequent time-consuming
change. If they must be chased, the time
for test preparation is reduced, with the
same result. If they are inadequate, the
time taken to discuss incidents is
increased, impacting bug-fix time.

because they are seen as a side issue, not
contributing directly to the delivered
product. It needs to be made clear that if
release and testing of code are on the
critical path then so is making the release
testable. The concept of a timeline event
called “release to testing” – which occurs
only after (i) the developers have released
not a build but a full installation and (ii) the
testers have verified it might help. Failing
that, asking the following questions will help
to anticipate problems and taking action to
make more of the answers positive will
reduce execution time.

are test environment considerations
being included in project risk
management?

has the number of environments, and
instances of each, been established or
estimated?

does the test plan include identification
and the project plan creation and
maintenance of test data?

have the specifications of environments
yet to be created been documented and
agreed?

have the stability and performance of
environments already created been
assessed?

will there be any requirement to share
environments with other activities or
projects?

does the project plan include allocation
of environments to testing and does the
schedule show the associated
dependencies?

have technical support resources
required to provide and configure user
accounts and then to assist users of the
environments?

has configuration management to enable
environments to be reproduced exactly,
and to track change and difference
between environments, been
implemented?

Derk-Jan de Grood is a test manager at Valori (http://valori.nl) and author of
TestGoal: Result-Driven Testing (Springer, ISBN 9783540788287). His new book in
Dutch, Grip op IT: De Held Die Voor Mijn Nachtrust Zorgt (Academic Service, ISBN
9789012582599) will be published later this year. He speaks frequently at international
testing conferences, including about his passion for aligning IT and business

Managing manual testing

PT - February 2011 - professionaltester.com 14

In certain situations manual testing is
better than automated. It can take many
forms, adapting to achieve immediate
objectives and solve or work around
problems at any point in the application
lifecycle, making it popular with agile
development teams and with V-model-
minded testers. Some of those forms
require little preparation and none require
script recording, coding or intricate
technical setup. Some do not require
technical skill: there will always be parts of
applications that must be tested manually
by business analysts and end users as
well as testers. There will always be the
need to check for important defects very
quickly using knowledge and experience
rather than systematic techniques. And
testers will always be expected to and
want to explore products in creative,
unplanned ways to improve assurance
against unforeseen high-impact failures.
Entirely manual testing also has
disadvantages, but they are greatly
reduced by HP's new Sprinter technology,
which is now core functionality in Quality
Center.

Data-driven manual testing is
inaccurate
A wrongly-performed step or incorrect data
input can lead to overlooked defects or
wasteful false incidents. Repeating the
same steps multiple times with different
inputs makes mistakes even more likely,
because of the sheer tedium and the need
to switch attention between the application
under test and the data source. As time
becomes short discipline is lost under
pressure to take shortcuts, deliberately
skipping steps or entering incorrect data.
HP Sprinter, under manual control,

automatically injects the correct data into
every field, increasing speed, accuracy
and ease.

Manual compatibility testing
takes too long
It is typically possible to execute manual
tests on a very limited number of
environments: there simply is not time to
continue to repeat execution. HP Sprinter's
mirror testing replicates manual execution
automatically and simultaneously across
multiple platforms and configurations,
increasing compatibility coverage.

Reporting and reproducing incidents
wastes time
Whenever manual execution has a
nonsystematic element, reporting an
incident sufficiently becomes difficult. That
delays resolution which in turn delays
testing. Sprinter records and logs manual
testing steps precisely ensuring that every
incident reported is reproduced at the first
attempt. The recording is easy to read and
HP Sprinter provides state-of-art screen
and movie capture and annotation facilities
to accelerate test documentation and
incident management and resolution

by David Yuill

Use the force better, Luke

Manual test execution is monotonous,
time consuming and error prone.
Why is it still so common?

David Yuill introduces
HP's new concept:
accelerated manual
test execution

David Yuill is Apps Product Solution
Marketing Manager (EMEA) at HP.
For more information about HP Sprinter
see http://hp.com/go/sprinter and
http://youtube.com/watch?v=-G8C61PnlS0

Managing manual testing

15PT - February 2011 - professionaltester.com

The Test Maturity Model Integration
(“TMMi”) is a guideline and reference
framework for test process improvement.
Such a framework is often called a
“model”, that is a generalized description
of how an activity, in this case testing,
should be done. TMMi can be used to
complement Capability Maturity Model
Integration (“CMMI”), the Carnegie Mellon
Software Engineering Institute's wider
process improvement approach (see
http://sei.cmu.edu/cmmi), or
independently.

Applying TMMi to evaluate and improve an
organization's test process should
increase test productivity and therefore
product quality. In achieving this it benefits
testers by promoting education, sufficient
resourcing and tight integration of testing
with development.

Like CMMI, TMMi defines maturity levels,
process areas, improvement goals and
practices. An organization that has not
implemented TMMi is assumed to be at
maturity level 1. Being at level 2, called
“Managed”, requires the practices most
testers would consider basic and essential
to any test project: decision on approach,
production of plans and application of
techniques. I call it “the project-oriented
level”.

The goals and practices required by level
3, “Defined”, invoke a test organization,
professional testers (that is people whose
main role is testing and who are trained to
perform it) earlier and more strategic test
planning, non-functional testing and

reviews. These practices are deployed
across the organization, not just at the
project level. I think of level 3 as the one
where testing has become
institutionalized: that is defined, managed
and organized. To achieve that, testers are
involved in development projects at or
near their commencement.

Version 3.1 of TMMi, launched at
EuroSTAR in December 2010, defines its
top levels: 4 “Measured” and 5
“Optimization”.

TMMi level 4: Measured
This is the level where testing becomes
self-aware. The Test Measurement
process area requires that the technical,
managerial and operational resources
achieved to reach level 3 are used to put
in place an organization-wide programme
capable of measuring the effectiveness
and productivity of testing to assess
productivity and monitor improvement.
Analysis of the measurements taken is
used to support (i) taking of decisions
based on fact and (ii) prediction of future
test performance and cost.

Rather than being simply necessary to
detect defects, testing at this level is
evaluation: everything that is done to
check the quality of all work products,
throughout the software lifecycle. That
quality is understood quantitatively,
supporting the achievement of specified
quality needs, attributes and metrics. Work
products are evaluated against these
quantitative criteria and management is
informed and driven by that evaluation
throughout the lifecycle. All of these
practices are covered in the Product
Quality Evaluation process area.

The Advanced Peer Reviews process area
is introduced and builds on the review
practices from level 3. Peer review

by Erik van Veenendaal

To maturity, and beyond

TMMi intends to help organizations achieve
more effective, more efficient, continually
improving testing. The first complete version
was launched last month

Test process improvement

PT - February 2011 - professionaltester.com 16

Erik van Veenendaal
describes the final two
maturity levels which
have been added

organizations call this the Test Process
Group or TPG: it relates to and grows
from the test organization defined at
TMMi level 3, but now takes on
responsibility for practices introduced
at level 5: establishing and applying a
procedure to identify process
enhancements, developing and
maintaining a library of reusable
process assets, and evaluating and
selecting new test methods and tools.

Level 5 introduces a new process area,
Defect Prevention. Defects are analyzed
to identify their causes and action
taken, comprising change to the test
and/or other processes as necessary, to
prevent the introduction of similar and
related defects in future. By including
these practices, at level 5 the objective
of testing becomes to prevent defects.

This and the other process areas
introduced at level 5, Test Process
Optimization and Quality Control, are
interdependent and cyclic: Defect
Prevention assists product and process
Quality Control, which contributes to
Test Process Optimization, which in turn
feeds into Defect Prevention and Quality
Control. All three process areas are, in
turn, supported by the continuing
practices within the process areas
established at the lower levels

Test process improvement

17PT - February 2011 - professionaltester.com

much as possible by automation and able
to support technology transfer and test
process component reuse.

To achieve such a process a
permanent group, formed of
appropriately skilled and trained
people, is formally established. Some

becomes a practice to measure work
product quality early in the life cycle. The
findings and measurement results are the
basis of the strategy, planning and
implementation of dynamic testing of
subsequent (work) products.

TMMi Level 5: Optimization
When the improvement goals at levels 2, 3
and 4 have been achieved, testing is
defined completely and measured
accurately, enabling its cost and
effectiveness to be controlled. At level 5
the measurements become statistical and
the control detailed enough to be used to
fine-tune the process and achieve
continuous further improvement: testing
becomes self-optimizing.

Improvement is defined as that which
helps to achieve the organization's
business objectives. The basis for
improvement is a quantitative
understanding of the causes of variation
inherent to the process; incremental and
innovative change is applied to address
those causes, increasing predictability. An
optimizing process is also supported as

Erik van Veenendaal (http://erikvanveenendaal.nl) is a widely-recognized expert in
software testing, an international testing consultant and trainer and the founder of Improve
Quality Services BV (http://improveqs.nl). He is the lead author and developer of TMMi and
vice chair of the TMMi Foundation. His new book with Jan Jaap Cannegieter,
The Little TMMi: Objective-Driven Test Process Improvement, is reviewed on page 22

Figure 1: TMMi maturity levels and their process areas

5 Optimization
Defect Prevention
Test Process Optimization
Quality Control

4 Measured
Test Measurement
Software Quality Evaluation
Advanced Peer Reviews

3 Defined
Test Organization
Test Training Program
Test Lifecycle and Integration
Non-Functional Testing
Peer Reviews

2 Managed
Test Policy and Strategy
Test Planning
Test Monitoring and Control
Test Design and Execution
Test Environment

1 Initial

• are functionally representative, in order
to achieve coverage of classes and
domains

• violate defined constraints, for
robustness and reliability testing

• contain security threats such as SQL
injection and persistent cross-site
scripting attempts.

Sculpting and controlling the data
The inputs to DFT include XML files
containing the field definitions plus
captured metadata that controls the
quality, variety, and variability factors
such as referential integrity,
geographical and demographic variation
and business intelligence. Its
configuration controls include support
for static configurable lookup, and
weighted-random pickup of data from
enumeration sets.

As well as populating test databases,
DFT can create related test input data
(figure 1). In recent client projects we
have used this capability to create data-
driven test suites – for both manual and
automated execution – to invoke and
exercise specific combinations of input
and test data, and meta-driven test suites

to permutate the order in which test
cases are executed with each regression
cycle. Test inputs can be varied using
fully configurable randomization too.

Deploying, refreshing and updating
Loading data produced by DFT into the test
DBMSs is automated using Apache ANT
(http://ant.apache.org)

Once DFT has been configured to produce
the required data, the same configuration
can be used again but with the addition of
uniformly-distributed or stochastic
randomization. This creates further data
which has the same defined
characteristics and is governed by the
same constraints, but is materially
different, refreshing the test data so
increasing the coverage and defect finding
potential of testing.

To update data in a managed rather than
random way, the characteristics that make
each record valid or invalid are recorded
and can be varied at will: so the minimum
amount of change to make valid records
invalid and vice-versa can be applied easily,
and coverage of the range of factors that
make them so monitored. A second
approach uses a small amount of seed data
to ensure the presence of specific, desired
records among the many created on-the-fly.

The test data is under full configuration
management at all times: DFT is integrated
tightly with CVS (http://nongnu.org/cvs)

by Ashwin Palaparthi

Better than life
Real data limits testing: fabricated data
empowers it

Test data

PT - February 2011 - professionaltester.com 18

Ashwin Palaparthi
explains how AppLabs creates
the data it needs to test
enterprise-level applications

Getting test data with enough volume,
variety and variability is often troublesome,
more so when testing multi-environment
enterprise systems that will interface with
external systems. Using real data has
compliance implications and adapting it to
deal with them properly often compromises
testing effectiveness. The painstaking work
done to make the data “safe” and extend it
for instrumentation purposes while
maintaining integrity and dependency is
very expensive to repeat when change to
the application under test occurs.

To address this challenge AppLabs creates
test data from scratch, using its own Data
Fabrication Toolkit (“DFT”) to produce the
very large numbers of records commonly
necessary for testing in banking, financial,
insurance and healthcare applications, or to
test database performance or validate
analytics in any system. DFT is integral to
our service delivery. It includes features to
populate and maintain referential integrity of
specific, difficult fields including US Social
Security number, UK National Insurance
number and credit card details. The data
can also be very rich. DFT includes facilities
to calculate and insert values that:

Ashwin Palaparthi (ashwin.p@applabs.com) is VP, innovation at AppLabs, which he
rejoined recently when it acquired ValueMinds, the company he left to found three years
ago and which has created many innovative test tools including testersdesk.com

Figure 1: DFT in test and test data generation

Test databases (multiple types)

App under
test (multiple
versions and

environments)

Test data
(multple versions)

Test input and
configuraton

correlation

Calls to
external systems

test actions

AppLabs DFT

Data model Field-level
metadata

Control and
configuration

Application Quality Management (AQM)
products have many functions. They do
different things for people in different roles,
depending on complex factors such as
process, entities and other tools. However
their purpose is clear and unchanging: to
ensure business objectives are met. Doing
that well is becoming harder as software
organizations are increasingly challenged
to achieve better quality, less risk, faster
delivery and lower costs.

So development methodologies are
evolving, becoming more agile and closely
aligned to changing business need.
Testing is having to change too but, as
always, how it should is less obvious. As
development becomes more reactive and
unpredictable, the ways in which testing is
organized and performed across
organizations, teams and even projects
are becoming more, not less, varied and
complex. To cope, testing must remain
able to change itself, to integrate more
and more closely with project

management, development and
operations and to involve business more
and more directly. The days when these
functions operated in their own silos and
communicated infrequently are gone.
Intrinsic continuous connection between
them is now mandatory.

AQM has not kept up. The market-leading
products continue to impose their own
processes: a narrow and limiting
hierarchical workspace of requirements,
tasks and defects based on the practices
of the programmers that created them or
on dubious interpretations of incomplete,
decades-old standards. At Original
Software we formed the opinion some time
ago that what testers need now is not a
prescriptive database application, but a
quality management platform that can be
used to implement and support any
process and integrate with any external
activity or tool. Our offering, Qualify, was
launched last year. Like older products it
stores, monitors, controls and
communicates information about
requirements, design, build, test planning
and control, test execution, test
environment and deployment, providing a
unified view. But it is designed for use by
business analysts, project managers and
operations as well as development and
testing staff, enabling all to implement their
own processes exactly and assimilate
them seamlessly.

Choose your own adventure
Qualify's data definitions are completely
configurable: its flexibility is limitless. It
comes with templates based on all the
popular methodologies, including
traditional ones, for customization, or can
be set up from scratch within realistic time:
a customer with expertise in Sogeti's
TMap implemented it fully using Qualify in
48 hours. A user account, once created, is
available at all times, even across different

by George Wilson

Equality Unconquered

Testing will never stop diversifying
and never should

George Wilson says
quality management
tools should provide
liberation, not limitation

Managing manual testing

19PT - February 2011 - professionaltester.com

methodologies and roles. Its attributes are
retained and its permissions can be
configured separately for each project.
While other tools require a great deal of
data input before testing effort can begin,
and continue to provide more questions
than answers for a long time after that,
Qualify hits the ground running. This
flexibility is particularly valuable to testing
consultancies and service providers: they
can provide the test process each of their
customers prefers using a single product
and re-using assets and expertise
common to multiple projects. And when an
improvement to a process is identified, it
can be implemented immediately.

To each according to need, not ability
Direct, objectives-driven management
requires removal of unnecessary barriers
between roles. Rules such as that only a
test manager can assign test cases to
testers, only developers can change the
status of an incident to “fixed” and only a
tester to “retested”, and testers produce
summary reports for BAs to read are
simply not agile. The idea that anyone in
the team can take on any of the team's
tasks, is. Qualify's extreme ease of use
makes that a reality: its interface is clean,
simple, intuitive and completely code free.
Here's an example:

PT - February 2011 - professionaltester.com 20

Managing manual testing

Figure 3: reassigning multiple test cases

Figure 2: grouping test cases

Figure 1: test cases for requirement “Order Entry 1.10”

21PT - February 2011 - professionaltester.com

Managing manual testing

Suppose “Sally Business Analyst” is
indisposed and “Joe Developer” is to
take responsibility for executing her test
cases related to the requirement “Order
Entry 1.10”. First we view all test cases
for that requirement (figure 1). Next, we
group them to get all Sally's ones
together: that's done simply by dragging

the “Allocated To” column heading onto
the “Group by” area just above it
(figure 2).

Now the affected test cases are selected
in the familiar Windows way: click the first
and shift-click the last. All are dragged
and dropped onto the “Joe Developer”
group (figure 3). And that's it.

Another example: a DBA, a developer
and their PM, Cindy, start work on new
test cases. Cindy changes the status of
all three by grouping them by control-
clicking them and dragging them to the
“In Progress” group (figure 4). They are
now tasks in progress throughout
Qualify: in Gantt charts, reports, the
affected users' calendars (figure 5) and
work lists, and the practically infinite
other data views.

Auditability and accountability for
today’s business world
It’s no longer enough to report the results
of testing. Business stakeholders need
the ability to define their own reporting so
that they can understand precisely what
has been done at whatever level is
needed to meet their rapidly-changing
needs including evidencing compliance.
Qualify provides absolutely detailed
history so that complete audit trailing,
versioning, rollback and coverage
measurement can be achieved easily. It
outputs fully customizable reports in
various formats including publish-ready
HTML and PDF

George Wilson is a founder and general manager of Original Software
(http://origsoft.com)

Figure 5: Qualify's planner view

Figure 4: changing status of multiple test cases

Revelation space

Test library

PT - February 2011 - professionaltester.com 22

Advanced Test Management
by Patrick Hendrickx and Chris Van Bael
ps_testware, ISBN 9789090257273
Available from http://amazon.fr, soon from http://amazon.com

The Little TMMi: Objective-Driven Test
Process Improvement
by Erik van Veenendaal and Jan Jaap Cannegieter
UTN, ISBN 9789490986032 Available from http://www.utn.nl

In his foreword Alain Bultink says that

ps_testware and ISTQB share the same

philosophy of testing. That is the great

strength of this book: the authors have

embraced completely the often mysterious

ISTQB Advanced Level Syllabus and

explained their interpretations of it more

clearly than anyone else has yet managed.

Even better, the explanation is practical:

the titles of many sections begin with “How

to...” and they really do demonstrate

actually doing the things needed to choose

the right exam answer. Diagrams (not

including the silly photos at the start of

each chapter) are well executed. As the

As contributors to and enthusiasts for

TMMi, the authors want it to be adopted by

more test organizations. Their book aims to

promote that and is deliberately compact in

order to make the model more accessible.

In fact 50 or so pages are the text of the

syllabus requires, much is drawn from

other sources, but the whole adheres

tightly to ISTQB’s prescriptions – exactly

what someone aiming to pass Advanced

Level Test Manager needs. Indeed, the

tripartite nature of the syllabus means that

portions of the book can be used also by

those studying for Test Analyst and

Technical Test Analyst. A subset of the

content would also be good, in my opinion

better than BCS’s official book, for

Foundation Level candidates. The large

page count (685) is due to the use of

“structured writing" which is granular,

organized and formulaic. Paragraphs are

model, but with the low-level detail

removed: over 56,000 words cut down to

about 13,000. That obviously makes it

easier to digest, but the very stiff and

general style remains. Explaining what it

means (which is often far from obvious) in

very short with many in tables, and element

types and subheadings are plentiful and

diverse. It works brilliantly for study and

reference, but less well for personal

learning and understanding, because the

fragmentation makes linear reading heavy

going: there is almost no narrative. So, this

is a fine study aid, positively essential for

anyone taking ISTQB-AL-TM. It’s also a

good textbook, although it’s better to dip

into than read through, and would be even

better if it contained fewer defects: typos

etc fall to the eye too readily, and those

publishing books for testers should do

more to convince readers that they are

eating their own dog food. Whether it’s a

sourcebook for a test manager depends on

to what extent he or she agrees with

ISTQB, but it contains much valuable,

accessible information and is undeniably a

worthy addition to the genre.

a less formal way, with examples, may

have achieved the objective better. The last

20 pages are original: they describe

assessments, then implementation using

IDEAL. These sections are much easier to

read and are worthwhile, but again are

prescriptive rather than instructive. This

book is a convenient way to learn what

TMMi says we should do, but a practical,

self-contained guide to tell us how is

needed too.

BS 8878:2010 Web accessibility –
Code of practice
BSI, ISBN 9780580626548
Available from http://bsigroup.com

This new standard has replaced PAS

78:2006 Guide to good practice in

commissioning accessible websites and is

very well written in a modern style making it

far more readable than that and other older

standards such as those familiar to testers.

It's an essential guide for anyone formulating

new web strategy, such as a startup, and

more experienced web application managers

will appreciate having almost all the current

advice in one place. For example, did you

know that a United Nations convention

(http://un.org/disabilities/convention/conventi

onfull.shtml) requires “products to be usable

by all people to the greatest extent

possible”? Other than mind-boggling but

useless facts like that however web testers

will find nothing new. We are told to create

an accessibility test plan. Its obvious

contents are described in four brief bullet

points. The test methods mandated are

markup validation, WAI conformity checking,

executing tests without using a mouse and

with assistive technologies, “expert reviews”

(heuristic evaluations and walkthroughs) and

observing representative users. Finally we

are reminded to repeat accessibility testing

when the site is updated. The best

information in this document, such as the

clear explanation of current legal and other

obligations, business justification for good

accessibility and discussion of the needs of

people with different disabilities has

implications for testing but does not help to

do it. After all these years, a usability and

accessibility testing standard or at least

textbook providing innovative, applicable

test techniques is still sorely needed.

Test library

23PT - February 2011 - professionaltester.com

Selenium Simplified
by Alan Richardson
Compendium Developments, ISBN 9780956733214
Available from http://www.compendiumdev.co.uk and http://amazon.com

This is a tutorial to be followed by a

learner with hands on a computer – the

crashiest of courses imaginable, in not

only Selenium but Java, XPath, CSS

Selectors, JUnit and much more. Its

direct, conversational style is fast-paced

but very easy to follow, and well-explained

code and screen shots are plentiful. It's

highly accessible, easily achieving its goal

of being suitable for almost anyone, even

those with no previous coding or

automation knowledge, and will be

enjoyed just as much by the experienced.

Windows is used throughout, but other

than in the short sections on installation

etc, the steps are similar under Mac or

Linux. Whatever the OS, in parts where

the test items and tools interact directly

with it some readers might be in danger of

getting stuck if something about their

environment causes behaviour different to

what the narrative expects. Apart from

that, the only weaknesses result from the

author's decision to self-publish. That's

obviously to be encouraged, but the

production is not yet good enough. The A4

format makes it too big and heavy for

comfortable reading in the hands, yet it is

perfect bound, so will not lie open on a

desk, and graphics are printed in

greyscale, reducing the readability of

screenshots showing code being edited.

Finally, no book should be judged by its

cover, but especially not this one. Buying

the e-book entitles one always to

download newer versions, which have

already addressed many of the language

and layout defects in the printed copy we

reviewed, so is easiest to recommend.

Anyway, that’s the best way to read it –

onscreen, in colour, alongside the

applications it teaches you to use. It looks

fine on a handheld reader too. Whichever

format you prefer, if you want to learn this

stuff you must get this book – there's no

better way, except being shown by the

author in person. Testing, not only

automated, needs many more truly

practical books like this.

Thanks to its author we have one printed

and three e-book copies of Selenium

Simplified to give away. For your

chance of getting one, send an email to

books@professionaltester.com telling us

what is your favourite testing book and

why. The free books will go to the writers

of the first four emails received

3
4

1
2

http://www.professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt7-tricentis

Shoot for success
All your testing requirements fi rmly under control

Not only does software testing save time and money; it also protects your good reputation.

Ensuring high quality in your IT projects is challenging and requires continuous training.

 Specialist training can solve your real-life testing and QA problems. Give your testing team

the winning edge with best practices drawn from successful real-life projects!

 Learning how to best use industry-leading tools from vendors including HP and Microsoft

will secure you maximise your investment and increase your team’s effi ciency.

 For practitioners, our ISTQB® Certifed Tester training series drives confi dence and guarantees

a secure platform to build success on.

 Our TrainingFLEX scheme will help you squeeze more value from your training budget

and ensure success.

* Courses must be booked and taken by 30 April 2011, quote code PT1102 to qualify

Details of all SQS training services are available at www.sqs-uk.com/training

off all SQS training

for Professional

Tester readers*15%

Training advert UK A4.indd 1 19.01.2011 13:05:27

http://www.professionaltester.com//link/clicks.asp?type=WebHomePage&adid=3&link=pt7-sqs

