
Number 18
April 2004
ISSN 1742-8742

THE MAGAZINE FOR TESTING PROFESSIONALS £4

Test Hybridisation©

It’s common sense.

www.nandtesting.com/hybridisation

London - Edinburgh – Dublin - Glasgow – Birmingham - Belfast

Whether it's Weblogic or Websphere, Tibco or MQ, Oracle or DB2, nmqa have the skills
and experience to solve your testing problems.

For the most flexible, innovative and high quality software testing solutions, think:

Having problems solving the software testing puzzle?

11-15 betterton street
covent garden

london
WC2H 9BP

email: info@nmqa.com

For more information on this and other services, please visit www.nmqa.com

tel: 0207 470 8818

i
n

t
e

l
l

i
g

e
n

t

t
e

s
t

i
n

g

Doing it our way
In the last issue of Professional Tester I suggested that Software

Testing as an activity and a profession still has a lot to prove, as

evidenced by the generally poor quality of software in use. Some

readers have suggested that I am blaming the wrong group and

this is true in many ways. However my point was not that testers

are responsible for poor products but that testing has not yet

achieved its aim of solving the problems caused in development

projects by others.

This is even more true when applied to the almost universally

abysmal usability of public-facing web applications. In this area,

testing has not only failed to provide good enough solutions: it

has, so far, failed to even begin addressing the problem. In this

issue we and our excellent contributors intend to offer assistance

to readers to improve matters; not only web usability but appro-

priate user interfaces for applications of all kinds.

This kind of testing is different from the activities in which

most testers have expertise and it is possible to argue that it is not

testing at all, but rather assessment. Our regular columnist

Felix Redmill made a convincing case in a recent issue (PT 15)

that testing should include assessment but for the moment we will

leave this matter to him and other thinkers on it; our contributors

this time have been asked to approach user interfaces and usabil-

ity from a tester’s point of view, and provide practical ideas which

can be applied using the skills testers already possess, and they

have risen to this challenge.

An interface which is readily learnable and usable by inexperi-

enced users, of the SUT and similar systems, will lead to fewer

errors being made by all users. Just as we examine the interfaces

between components carefully to prevent unexpected input to

those components, we should consider the user interface as a

source of software failure of all kinds.

Edward Bishop

Editor

Number 18 • April 2004

News
Conferences . 4
Developments . 5
MarketWatch . 5

User interface testing
Making it easy . 6
Edward Garson’s holistic approach to good design

Usability and reusability 10
Chris Ambler discusses scripted usability tests

For the record . 14
Sarah Saltzman on using automation in usability testing

Not a matter of opinion 18
Edward Bishop’s suggests an objective usability testing method

Through other’s eyes 30
How Tim Edmonds gained insight to accessibility issues

Articles and features
Test library . 8
The quarter’s new books

Venerable and vital 9
Geoff Quentin revisits the V-Model

Performance testing survey 2004 16
In preparation for the next issue, we ask for your views

Changing gear . 24
Mike Lucas with a regression testing case study

Ghost in the machine 26
John Kent continues his series on test automation

Using risk as the basis of test planning . . . 28
Can some risk of failure be tolerated? Felix Redmill thinks so

The theme for the next issue, in July 2004, will be
Performance Testing. This is clearly the fastest-growing type of
testing in terms of the numbers of testers working on it, and the
one best supported by automation, but there are many tales of
high-value systems which passed testing and still failed under
real load. As well as the results of Embarcadero’s survey (see page
16 of this issue) we will have a range of articles on performance
testing, from first principles to using highly advanced tools. Ideas
and opinions in letter form are, as always, invited. If you would
like to contibute an article please download our guidelines from
www.professionaltester.com and let us know what you have in
mind before starting to write.

Professional Tester is published quarterly by Test Publishing Ltd, 73 West Road,
Shoeburyness, Essex SS3 9DT. Tel 01702 294491; Fax 01702 299040.
Email editor@professionaltester.com. Views expressed by contributors are not
necessarily those of the editor or proprietors. ©Test Publishing Ltd 2004. All rights
reserved. No part of this publication may be reproduced in any form without written
permission. Professional Tester is a trademark of Test Publishing Ltd.

Vocabulary for a new era
This year’s new buzzwords, as heard at EuroStar and ICSTEST

IT governance high level management using information business can
understand (ie amounts of money) and verbal instructions
so that it’s not necessary to understand the trivial
technicalities of doing the job itself

alignment extra work for testers to produce the monetary figures
needed for governance (see above)

classical testing old-fashioned, cumbersome techniques that are not as
good as radical new ideas. Better still do them though,
it’s too risky not to

experience-based
testing

guessing

pattern-based
testing

guessing

know-how not knowledge but “direct applicable problem-solving
knowledge for productive tasks”. What’s the difference?
We don’t know

collaboration good communication between business, development and
testing. Now why didn’t we think of that?

4 www.professionaltester.com • Professional Tester April 2004

One expects to learn of new developments
and ideas at ICSTEST, but this time the most
striking aspect was the emphasis placed by
many of the speakers on established, “tradi-
tional” good practice: independent test teams,
formal definition and early validation of
requirements, frequent reviews and inspec-
tions facilitated by trained moderators, and
empowering testers to influence development.
So this ICSTEST was less radical than the last,
but as always there were excellent talks by
speakers with a great deal of experience. This
time, many of them were drawn from the auto-
motive, aerospace and space transportation
industries, and the approaches they took to the
special challenges faced gave food for thought
on how the lessons they have learned might be
applied to the business systems on which most
testers, and PT readers, are working.

Dr Lawrence E Day of Boeing has been
involved in every kind of lifecycle but explained
what seemed to be a largely traditional, disci-
plined approach to creating a unified
management structure and common develop-
ment methodology, with responsibility for
project success and delivery time given to small
development teams (comprising development,
testing and QA staff) rather than to management.
Day described how he sold this idea to senior
management by bringing them into inspections
where they see people from the different groups
achieving mutual understanding of the develop-
ment process quickly, understanding and
working to implement verbal directions (all of
which are carefully documented) and providing
the information senior management needs to
work at a “governance” level.

Professor Mike Holcombe of the University
of Sheffield explained his current research into
new evidence on the factors affecting testers,
their wellbeing, and the quality of the work they
do. He quoted some frightening statistics from
various sources, eg “bugs in software cost £3,250
per user annually”, “23% of users have their

work disrupted by
software failures al
least once per day”,
“20% of users spend at
least one hour per day
fixing problems
caused by poor soft-
ware” and “67% of
software companies

have purchased [testing] tools and never used
them”. He concluded that developing business
models will affect software development and
also the interface between testing and design, and
that testing needs to adapt to handle change - an
important factor in dynamic business – better.

The testing/business relationship theme
was continued by several subsequent speak-
ers including Errol Rodericks of Mercury
Interactive and Theresa Lanowitz of
Gartner, both of whom focused on “aligning”
IT to the needs of the business – not by
analyzing requirements to build and test
systems, but by analyzing the systems against
business criteria, ie money earned and saved;
this, at last, threw some light upon Mercury’s
new product range which includes their test
tools as only part of a range of monitoring
and measuring solutions, the top level being a
“business dashboard” containing instruments
showing key business performance indica-
tors. The central message seemed to be “IT
cannot carry on as it has been, business has
now recognized the importance of applica-
tions and is about to get far more involved”.
Depending on your point of view, there are
two possible reactions to this news: (i) IT is
entering a new era of maturity which will
enable it to achieve the same levels of effi-
ciency and quality as manufacturing industry;
or (ii) the barbarians are at the gates. Of
course, it’s one thing for business to believe it
can manage software development and main-
tenance projects better than technical
personnel; proving it is another.

Test use cases are not test cases but a
formalized way of describing tests by captur-
ing interactions between the tester and the
system under test. Vincenzo Cuomo of ST
Microelectronics intro-
duced us to the format
and how it can be used
as the first step in intro-
ducing UML into a test
process. He finished by
expressing his hope
that the forthcoming
UML 3.0, and UML-
based modelling tools such as Rational Rose,
will include more support for testing.

Dr Adam Kolawa of Parasoft was one of
the most entertaining speakers because he did
not shy away from controversy and obviously
believes in his message - that many defects in
software have a root cause in the code and
can be prevented - with passion. Here are
some quotes: “We believe we can test bugs
out of software but this is not so, as we can
learn by looking at other industries”; “unit
testing is now at an automatic, white box
level and should not involve any people”; “I
went to an organization in India which was
supposed to be at CMMI level five. They had
one PC for static analysis of code for the
programmers to use if they wanted to. I told

them in my opinion
they are at level one”;
“there are two ways of
implementing [code
quality standards]; the
fascist way and the
nice way. Either way
the developers will be
squeaking”. He was

not the only speaker to advocate fully auto-
mated unit testing, but made the most
convincing case for it.

We returned to an “agile” development envi-
ronment with Andreas Kornstädt of IT-WPS, but
not as we previously
knew it. His approach
involves giving the
tests to the developers
to describe the system
they should build (“to
avoid haggling later
about the meaning of
requirements”), the
creation of tests by users, and the use of the open
source tool Fitnesse which allows tests to be
defined, and JUnit-style red light/green light
results displayed, in simple HTML tables by users
and testers with no Java knowledge. His explana-
tion, full of interest, enthusiasm and practical
information, showed how the “test first” philoso-
phy can actually be made to work; I am certain
that most of the people in the room will have
downloaded and begun playing with Fitnesse on
their return to their workstations.

ICSTEST always takes place in Germany and
the next will be in April 2005. However some of
the speakers from Düsseldorf, plus additional
ones, will also be at the smaller events taking
place later this year: ICSTEST-NL in
Utrecht/Soestduinen in June, ICSTEST-UK in
London in October, and ICSTEST-E in Bilbao in
November. For full details see www.icstest.com.

News: conferences
Edward Bishop reports direct from the fifth ICSTEST, in Düsseldorf

5thICS
TEST
I N T E R N AT I O N A L C O N F E R E N C E
O N S O F T W A R E T E S T I N G

5thICS
TEST
I N T E R N AT I O N A L C O N F E R E N C E
O N S O F T W A R E T E S T I N G

®®

MarketWatch with Centre4 Testing

Gang of 4 Centre4 Testing is a new recruiter
focusing solely on and with deep knowledge
of contract testing, having been formed by a
team of people who have worked in the UK
testing industry for many years (see picture:

Ryan Hannigan [left], Michelle Richardson,

Josephine Beavitt and Tony Wells), which has
already enjoyed early success by winning
preferred supplier agreements with several
blue-chip organizations. Director
Ryan Hannigan is looking for experienced
recruitment consultants to join the team, who

will also be using their expertise to provide the
latest information for our new regular feature
MarketWatch, below.
www.centre4testing.com • 0870 850 3434

Making the big things happen Major testing
consultancy Tescom has confirmed that
Neil Goodall is its new European managing
director. He was formerly banking programme
director for Post Office Ltd and took responsi-
blity for what was possibly 2003’s largest and
most successful project, introducing online
banking services into 17,500 Post Office retail

outlets across the UK. Neil
will be sharing some lessons
learned from this project with
PT readers in the next issue.
www.tescom-intl.com
+ 44 (0)207 022 6700

Knitting with silk Segue

Software’s Silk test manage-

ment, defect tracking,

functional test execution, load

testing and performance moni-

toring tools have been integrated with a new

centralized control, repository and reporting

interface, SilkCentral. The modules can be

purchased and installed individually and the

central component can also collect metrics from

non-Segue products.
www.segue.com • +44 (0)1189 657721

Are you watching, Gervais? Seapine Software
has won the 2004 Jolt Productivity award for
project management with its defect tracker
TestTrack Pro, and its automated test execu-
tion tool QA Wizard took the testing tools
award. The Jolts are awarded by the US maga-
zine Software Development.
www.seapine.co.uk • +44 (0) 1344 297613

Company’s three Compuware’s internal
quality assurance organization has achieved
SW-CMM level three certification. The TIC is
responsible for testing integration between
Compuware products.
www.compuware.co.uk • +44 (0)1753 444 444

Please send press releases, news etc to
press@professionaltester.co

April 2004 Professional Tester • www.professionaltester.com 5

News: developments
Market still looks healthy • new product from Segue • success for Seapine and Compuware

The contract software testing market is perhaps the earliest indicator of
trends for the rest of our industry. Every quarter we ask our customers
key questions designed to tap their knowledge and experience and
improve our view of what is happening and may happen.

Market sentiment
Compared to last quarter, 87% of contractors and test managers feel
more confident about prospects for the sector.

Whilst there is overwhelming confidence in the sector today, it would
seem that there are distinct pockets of activity and there are a number of
high profile projects recruiting large teams of testers. This may have
been caused by the downsizing trend of recent years creating a need for
teams to be built from scratch rather than backfilling roles ad hoc.

Whereas in the past many contractors enjoyed contracts that extended
so often that they appeared to work with companies for longer periods
than their permanent staff counterparts, the trend today is to hire
contractors for distinct time slices.

Jobs advertised
Contractors tell us that jobserve.com™ is currently their favourite
source of vacancies. 1,410 contract vacancies were advertised in the
week prior to 23rd April 2004. Of course, the same roles may have been
advertised by multiple recruiters.

Rate of pay
Following the laws of economics, as demand for contractors rises slowly,
so do remuneration rates. There’s an inevitable time lag between the
shift in client’s preconceptions, where they have grown accustomed to a

highly competitive market, and contractors for whom the telephone is
perhaps ringing a little more than of late.

In the late nineties, as we embarked upon year 2000 projects, clients
adopted a stance towards day rates rather than hourly rates which had
previously been the norm. With a “professional day” typically defined as
being 8 hours, overtime is paid only in exceptional circumstances,
enabling clients to budget more accurately and avoid project cost creep.

Our methodology for reporting rates is based upon the amount actually
paid to contractors. This removes the discrepancy of a wide range of
margins applied by recruitment agencies and consultancies who then
sell on the contractor to the end client.

Test analyst: £268 per day
Test manager: £384 per day

These same test analysts seeking new contracts today are looking for
upwards of £280 per day, an increase of 4.5% plus.

Market skills
The top three skills in demand by our clients today are:

1 J2EE
2 Oracle
3 retail banking experience

Next time we’ll include a special focus on the banking and finance sector.
If you have ideas for the questions we should ask or measurements we
should make, or would like to be included in our polls, please contact us
at marketwatch@centre4testing.com.

6 www.professionaltester.com • Professional Tester April 2004

Traditional defect testing involves mastering
a range of different types of testing and being
assiduous in the pursuit of excellence. The
best testers tend to be exceedingly detail
oriented and able consistently to find, exact-
ingly reproduce and communicate defects
back to stakeholders. It is a distinctly rigorous
discipline. There is usually no question as to
whether exhibited behaviour constitutes a
defect case or not.

On the other hand, usability issues are a
totally different beast. Usability transgressions
usually go wholly unnoticed by rafts of testers
who are understandably focused on the func-
tional behaviour of software.

IT professionals who take a conscious deci-
sion to challenge elements of the user interface
of a system have the opportunity to excel
through the provision of value over and above
that which is expected of traditional develop-
ment roles. Generally speaking, usability is
misunderstood and applied by the develop-
ment community at large. The opportunity to
improve systems in a very tangible fashion
exists and can feel very rewarding.
Furthermore, most development shops do not
have a usability expert on hand and generally
do not place much emphasis on this aspect of
product development.

Armed with some basic principles and the
right tools, savvy and self-motivated IT profes-
sionals can make a big impact on the quality of
the systems they work on by challenging
elements of the user interface. But user inter-
face design is as much an art as it is a science:
it has the potential to be extremely contentious.

Usability testing

The amount of time and effort spent testing
user interfaces will naturally be a function of the
perceived business value of a system. Usability
experts recommend allocating 10 per cent of the
overall project budget to usability. However this
is unrealistic for most organisations.

True usability testing is the domain of
usability specialists. Bona fide testing on large
projects involves setting up a dedicated usabil-
ity lab where session participants are
videotaped and may be observed through one-
way glass. Participants are given a prescribed
number of tasks to perform. The manner in
which participants go about completing tasks –

such as the navigation choices they make –
reveals important information about the
usability of various presentation components.
Participants are encouraged to verbalise their
thought processes to yield further insights
during the evaluation.

In his classic tome on usability, Usability
Engineering, Jakob Nielsen says “There are
several methodological pitfalls in usability
testing…” He acknowledges that there are
problems inherent to “real” usability testing.
The factors that contribute to this include
disparities in the individual skills of test partic-
ipants and large margins of error attributed to
interpreting test results. As he puts it, “For
usability engineering purposes, one often
needs to make decisions on the basis of fairly
unreliable data…”

The net result is that “real” usability
testing should be a
verifying and tweak-
ing process when
viewed in the context
of a holistic approach
to software develop-
ment. This is because
instituting changes at
this point that are any
more significant than
tweaking can be a very
expensive prospect.
Usability testing
should be an integral part of the development
process, irrespective of the methodology
being used.

Testing user interfaces - either casually or
seriously as described - demands knowledge
of how to design them in the first instance.
Understanding this process is integral to being
a good UI designer.

Use cases: an invaluable foundation

A very close relationship exists between use
cases and user interfaces. It should therefore
come as no surprise that use cases contribute to
the design of user interfaces. A use case is a
sequence of actions a system performs that yields
an observable result of value to a user. Use cases
describe goals of the system in a story-like
fashion between the user and the system.

They stipulate the bare essentials in terms of
data and interactions necessary to achieve the

functionality described by the use case. In doing
so, they facilitate deriving simple user interfaces.

More discrete components within a system
may be considered after having settled on the
basic user interface. These components are
born from requirements elicited during the
analysis phase. The requirements are often
grouped together into cohesive and meaning-
ful units known as use cases. Use cases
provide an invaluable foundation for arriving
at the right user interface.

The use case diagram in figure 1 contains
two use cases, Purchase item and Browse
catalog. Use case diagrams provide an overview
of the system as a whole, while individual use
cases describe coarse-grained functionality.

When designing smart-client user inter-
faces (ie desktop applications), this broad view
of the system is important in considering the
foundational, application-level user interface.
There exist only a few application-level user
interfaces deemed familiar to users on the
Windows platform. The vast majority of busi-
ness-oriented, OLAP-style applications fall
into one of these categories. They are:

1 Windows Explorer style user interfaces,
with a hierarchical tree-view on the left
and context-sensitive user interface
elements on the right

2 Outlook-style user interfaces with a
number of different “modes” and a task-
centric philosophy

3 Multiple document interface (MDI) style
applications with a parent window
containing one or more child windows
(considered a power user’s interface)

Making it easy
Edward Garson, senior consultant for Dunstan Thomas

Consulting, opens our look at user interface testing

Purchase item

Browse catalog
UserUser

Figure 1: Use case diagram

April 2004 Professional Tester • www.professionaltester.com 7

4 Microsoft Excel-style user interfaces with
separate individual tab sheets

The first step in designing or evaluating a
user interface is to first consider the big picture.
What foundational user interface style is best
suited to meet the requirements of the use cases
when considered as a whole? Choose one of
the above, unless special circumstances dictate
an alternative. Of course this does not apply to
the design of a thin-client user interface.

Use cases stipulate the bare essentials in
terms of data and interactions necessary to
achieve the functionality described by the use
case. In doing so, they facilitate deriving
simple user interfaces.

Use case driven user interface design

Use cases are ideally generic with respect
to implementation. There is ideally no indica-
tion of how functionality is rendered (eg by a
web browser, handheld device or thick client
application - or indeed, all three).

Each use case is supported by a use case
document which describes the interactions
between the user and the system in an imple-
mentation-agnostic manner. The use case
should be focused solely on the minimum
information required at each step and the work-
flow, which in the context of user interface
design may be viewed as a kind of constraint.

The notion of generic use cases becomes
important when testing user interfaces, because
the use case is the definitive source of “the
minimum of information” required to achieve
functionality. Good UIs at a minimum require
no more information than that outlined by the
use case. Use cases should be completely
focused on what is required of the user and the
system, not how it will be achieved.

A major component of testing user inter-
faces involves verifying that how the user
interface renders functionality marries up with
what is required by the use case. Although this

may seem obvious, a surprising number of
flawed user interfaces introduce extraneous
steps or implicitly require more data than is
required to achieve functionality. These trans-
gressions should be caught first, before
concentrating on lower-level details such as the
layout of discrete presentation components.

Designing good user interfaces is all about
facilitating how the user specifies what is
required by a use case in as straightforward and
task-oriented manner as possible. The steps
required to achieve this will partially depend
on the device rendering the user interface. This
is where use case realisation comes into play.

Use case realisation

Suppose both a web browser and handheld
device interface were required of the Purchase
item use case. There will of course be signifi-
cant differences in the user interface between
the two implementations. However, the basic
use case remains the same in that the same

basic data and sequence is
still required.

A use case realisation
is the implementation of a
use case in a specific
instance. They exist to
support the design process
of internal software
components, their collab-
orations and most
importantly the user inter-
face. Use case realisations
play a pivotal role in the
initial design and proto-
typing of user interfaces.

Use case realisations
are developed into one or
more sequence diagrams,
each representing a
scenario through the use

case. Sequence diagrams visually depict the
interactions that take place between the user
and the system in the course of realising func-
tionality for a discrete scenario.

These diagrams are a great starting point
for determining elements of the user interface.
Decisions such as how to segregate data, the
number of presentation elements required and
the order in which they are shown starts to
become clear during this activity.

Inductive user interfaces

Inductive user interface design has been
well received in the usability community.
Inductive user interfaces leave users in no
doubt as to what they should do at any point in
the system. These UIs are focused and have
clear and purposeful intent. They are distinctly
uncluttered and guide users toward accom-
plishing tasks. Contrast these user interfaces
which expect some knowledge on the part of

the user about how to use the system, with
inductive user interfaces, which in spirit do
not. Deriving inductive user interface designs
can be facilitated by following the design steps
previously discussed, especially with respect
to navigation.

The prototyping phase should reveal hard
data about the decisions we made during the
design phase such as how usable the proposed
navigational structure truly is. This begs the
question of how best to prototype user inter-
faces in support of this activity.

Paper prototyping: more than meets the eye

Paper prototyping is overall the single most
effective tool for prototyping user interfaces.
Paper prototyping is far more sophisticated
than most people realise and should absolutely
not be dismissed due to its apparent simplicity.

Benefits of paper prototyping include the
fact that it is extremely cheap and easy to
learn. It is possible to create and test more user
interfaces faster than with any other technique.
Paper prototyping also mitigates the apprehen-
sion that some users feel during “real”
usability testing: some users subconsciously
feel that they are in fact being tested, not the
user interface. They feel “stupid” if they are
unable to complete a task that is attributable to
a poor user interface; this can skew test results.
Playing computer with mock-up screens on
paper reduces these apprehensions and better
data is obtained.

Paper prototyping can also be turned on its
head. Printouts (or paper mockups) of existing
user interface elements can be made in order to
test them objectively against proposed improve-
ments or alternative designs. What is learned
from these user interface tests can be used to
lend credibility to the case for improving them.
In this manner, ‘real’ user interfaces get tested
against mockups on a level playing field.

It is important to prototype user interfaces
‘early and often’. Several iterations should be
performed to get the user interface right.
Testing it with a number of different stake-
holders is critical to ensure that the user
interface meets the requirements of disparate
user types.

Micro usability

The following fundamental principles
outline the basic characteristics of excellent
user interfaces. They can be used as a basic
guide to actively improve the usability of user
interfaces in conjunction with other resources.

Simplicity

Simplicity is the foundation of all great
user interfaces. Efforts to reduce complexity or
ambiguity are always good. Great user inter-
faces reduce complexity and guide users

User Manage
payments

Make
payment

Make payment

Select bill to pay

Payment
options

Select payment method

Set amount

Update

Figure 2: Sequence diagram (showing only boundary classes)

8 www.professionaltester.com • Professional Tester April 2004

toward accomplishing difficult tasks. A good
example of this is the Rules Wizard in
Microsoft Outlook.

Platform standards

Rich-client applications (as opposed to
thin-client web interfaces) should follow the
user interface design guidelines for the plat-
form for which they are intended. For
Windows applications, the bible is the Official
Guidelines for User Interface Developers and
Designers. Equivalent documentation exists
for the Macintosh platform.

The fundamental principle is that applica-
tions should fit seamlessly into the
environment in which they live. An application
running on the Windows platform should feel
like any other standard Windows application.

When testing for platform standards, rigor-
ously apply the guidelines to the user interface.
Flag any deviations as usability transgressions
and cite the appropriate documentation.

Consistency

Consistency is a very important element in
user interface design. It is better for related
things to work in the same way throughout the
user interface than to be inconsistent, even if it
is slightly flawed. Users learning systems tend
to try doing the same things to invoke similar
functionality: have them succeed.

Education

User interfaces sometimes disable widgets
that invoke actions that cannot be performed
under certain conditions. The problem with
this is that it may not be evident to the user
how to change the state of the application in
order to be able to invoke the desired action. It
is sometimes appropriate to enable a widget
that invokes an action that is inappropriate in a
given context, so long as an informative
message appears when the user does so. This
improves the ‘learnability’ of the application.

This problem is hidden by the fact that the
people who develop the system are expert in it
and so they do not view this as a bug; in fact,
they usually don’t notice this at all. The ability
to put oneself in the mindset of a first-time
user is required to improve the UI from this
perspective, which is not always easy.

Informative error messages

Many software professionals are satisfied when
an error message is correctly generated when
testing error conditions. However, good error
messages are the exception rather than the rule.

All error messages should be composed of
an informative reason why the error occurred
in very simple terms, and it is often helpful to
include a suggestion as to how the error may
be rectified.

It is interesting to note that error messages
are almost invariably authored by the same
person who wrote the code that generates them
in the first place. Larger software projects
should have a single person responsibile for
writing all error messages, to achieve consis-
tency across the system.

When testing the usability of error
messages, play the role of a first-time user.
Does the error message make it absolutely clear
what went wrong? Would you know precisely
what to do to achieve your original intent?

Conclusion

The best way to learn about user interface
design is to study good user interface designs
and read up on the subject. There exists a
vibrant and active usability community that
readily share and disseminate their expertise
on the web. It is possible to glean a lot of
useful information this way. They put a lot of
hard work into discerning what works and
what doesn’t. This information is shared with
the community: it is there for the taking. The
rigorous approach described in this article
should yield a high degree of confidence that
your user interface will be successful. This is
because first and foremost it will meet require-
ments and hopefully do so in as
straightforward a manner as possible. PT

Testing and Quality Assurance for
Companent-Based Software
Jerry Zeyu Gao et al
Artech House, ISBN 1-58053-480-5
A general testing textbook, but with examples
and explanations drawn from component-reuse
setups, eg EJB, COM+, CORBA etc. This
doesn’t cause much change to the basic testing
theory which comprises much of the content.

Relevance to testing: very high

Systematic Process Improvement
Using ISO 9001:2000 and CMMI
Boris Mutafelija and Harvey Stromberg
Artech House, ISBN 1-58053-487-2
Brings together the various models with very
helpful emphasis on the synergy between
them, getting roles and responsibilities well
defined, and the need for full and continuous
management support.
Relevance to testing: high, but indirect.
No advice specifically for testers

A Practitioner’s Guide to
Software Test Design
Lee Copeland
Artech House, ISBN 1-58053-791-X
A very practical book of applicable tech-
niques from one of testing’s best-known
names. Readable, friendly style, clear layout,
a few jokes, and useful practice exercises.
Recommended.

Relevance to testing: very high

The Capability Maturity Model
Carnegie Mellon University
Software Engineering Institute
Addison-Wesley, ISBN 0-201-54665-7
Excellent descriptions of performing assess-
ments, identifying opportunities, progressing
improvement and what process maturity
means to both customer and supplier make
this an essential reference. Published before
CMMI so covers only CMM v1.1.

Relevance to testing: high, but generic

Test library
This quarter’s new books about testing or of interest to testers

April 2004 Professional Tester • www.professionaltester.com 9

The original V-Model was called the U-Model
– and the U was on its side. It can be found in
the book Testing in Software Development
(Ould and Unwin, CUP, 1986).

As a trainer I found this difficult to draw on
a white board so I drew it upright as a V and
used this to introduce software testing to thou-
sands in the UK, Asia and Australia. The
diagram was the basis of much of my teaching
and by the end of a three-day course my
drawing of it would look like a Jackson
Pollock painting.

The V-Model is now widespread and even
found in ISO 12207 System Development
Processes to illustrate the way later testing
activity should be developed from the earlier
requirements-gathering activities. Not all
testers like the V-Model and some popular
presentations and books are openly disdainful
of it. This is a strange opinion and can be
safely ignored by any organisation that aspires
to process maturity above level one.

Care is needed with the V-Model as it is
often presented in far too simplistic a fashion,
diminishing its value. Figure 1 shows a poor
version easily discredited by detractors and
promoters of other models. First it is essential
to separate the views of the acquirer and the
developer and view the work from each in
turn. Thus the view of the acceptance tester is
as shown in figure 2. This can now be
balanced by the view of the system tester
which is shown in figure 3. The V-Model now
makes sense to both the acquirer (user) and
developer and both the acceptance and system
testers draw test material such as test plans
and test scripts from the specification and
design documents.

The project manager has the job of deciding
the degree of overlap between the testing work
done at system level and that done at accept-
ance. In an ideal world the acceptance testers
may simply concen-
trate on ensuring that
the delivered system
integrates properly
within all the existing
systems and rely on the
system testers to have
tested all the specified
functionality.

The system tester
view of the V-Model
based on the activities of
ISO 12207 is in figure 4.
The references in the
form [n.n.n] can be used
to find the activities
shown described in the
standard.

It will be seen that
system integration is
not a testing activity as
such and this is very
sensible and practical.
It will also be seen that
the system tester may
draw on information
from many documents
created during the
early stages of the
development process
and this is essential for
success. Finally it will

be apparent that the system tester expects the

software to have been checked before delivery

to system test. The empirical testing within

ISO 12207 is referred to as qualification

testing indicating that the system needs to be

qualified before migration to the next activity.

The conclusion to be drawn from all this is

that the system tester needs to be present at

reviews of requirements and design documents

throughout the development process and that

the strategy for the system test should be based

on the way that management have established

the project at process implementation and docu-

mented it in the Project Initiation Document

(PID). This is all very sound and accepted best

practice. The V-Model is a mature and sensible

model for all involved in the qualification and

acceptance testing of both software and systems

with a software component. PT

Venerable and vital
MD of QBIT and founder chairman of the BCS SIGIST Geoff Quentin explains the origins

and revisits the importance of the model on which virtually all software testing is based

Ajilon Consulting is an established provider of professional

managed and outsourcing services. Part of the Ajilon Group

we have the vision, ambition and financial muscle to extend

our presence at every available opportunity and are looking to

significantly grow our UK operation.

We require an SQA and Testing Practice Manager to help drive

this growth. With several years’ specialist experience in this

area, you’ll be an expert in your market and know all about

influencing key decision makers to bring in large software

quality assurance and testing service contracts. Your knowledge

of testing systems and methodologies will be second to none.

You’ll be tenacious, confident, focused, extremely enthusiastic

and will relish the prospect of driving your practice and watching

your responsibilities, prospects and career grow with it. Best of

all you’ll enjoy all the excitement, pace and flexibility of working

within a growing UK operation against the backdrop of one of

the world’s most successful business.

Please apply by forwarding your CV with details of your

current package to: Julie.downing@ajilonconsulting.co.uk

£Attractive plus Bonus Plan and Benefits

SQA and Testing Practice Manager
South East

www.ajilonconsulting.co.uk

PA
R

T
 O

F
 T

H
E

 A
JILO

N
G

R
O

U
P

Specification Acceptance test

Design System test

Figure 1: oversimplified view

Specification Acceptance test

Design

Figure 2: acceptance tester’s view

Specification

Design System test

Figure 3: system tester’s view

Process
implementation

[5.3.1]

Software
installation

[5.3.12]

System
qualification

testing [5.3.11]

System
integration

[5.3.10]

Software
qualification
testing [5.3.9]

System
requirements

analysis [5.3.2]

System
architectural
design [5.3.3]

Software
requirements

analysis [5.3.4]

Figure 4: system tester’s view, based on ISO 12207

10 www.professionaltester.com • Professional Tester April 2004

In today’s fast moving technological climate,
it is safe to say that the only constant is
change. Technology moves nearly as fast as
people’s ideas and new ways of doing things
are created every day. In the software world,
this means that Graphical User Interface (GUI)
front ends are always under review and
change. A changing GUI can have a massive
impact on the way the business is run. Users
that cannot use their ‘tools’ will find other
more efficient (but less effective) ways of
carrying out their daily tasks. As testers, this
causes a number of problems when it comes to
writing re-usable usability scripts. A balance
must be achieved between ‘re-inventing the
wheel’ and utilising old assets every time there
are changes to the front end. During develop-
ment, the main goal of a usability test is
usually ‘diagnostic’ and used to find out what
is performing correctly and what is not
working well, so that development can
continue with what is working and the devel-
opers and system testers can fix what needs
more work. The earlier this is done and the
more iteratively, the better.

Once development and system testing is
complete, it can be passed to the users/testers.
The most important thing to remember at this
stage is usability testing is not designed for
functional diagnostic testing, it is more of a
verification process to ensure that users can
complete a task successfully and it is fast
enough to satisfy them, the paths they take are
perceived to be efficient enough for them and
that they do not have any problems or get
confused anywhere. It ensures that the applica-
tion or system ergonomic qualities and overall
end–to–end interaction is satisfactory and
follow the Jacob Nielson usability heuristics.
These heuristics are:

1 Visibility of system status: The system
must always keep the user informed about
what is going on. This is done by feed-
back within reasonable period of time.
From a testing point of view, it is neces-
sary to understand, define and quantify
‘reasonable’.

2 Match between the system and the real
world: The system must speak the users’
language, using familiar words, phrases
and concepts. It must avoid using system-
oriented ‘jargon’. It is necessary to follow
real-world conventions as much as possi-
ble, making information appear in a
natural and logical order.

3 User control and freedom: It is a fact of
life that users will often make mistakes.
This creates the necessity for needing a
clearly marked “emergency exit” to leave
the unwanted state without having to go
through an extended procedure. It is
important that the application supports
‘undo’ and ‘redo’ facilities.

4 Consistency and standards: Users
should not have to
wonder whether
different words,
situations, or actions
mean the same
thing. The specified
platform conven-
tions need to be
followed, allowing a
user to be comfort-
able with the ‘look
and feel’ of the
system.

5 Error prevention:
Even better than good error messages is a
careful design, which prevents a problem
from occurring in the first place. When
error messages occur, they need to be
necessary, or alternatively be avoided by
better design.

6 Recognition rather than recall: Objects,
actions, and options need to be visible. The
user should not have to remember informa-
tion from one part of the dialogue or
process to another. Instructions for use of
the system should be visible or easily
retrievable whenever the user requires them.

7 Flexibility and efficiency of use: The
system needs to be as flexible as possible
for differing levels of users. It is some-
times useful if experienced users can

tailor frequent actions. Accelerators,
unseen by the novice user, may often
speed up the interaction for the expert
user such that the system can cater to both
inexperienced and experienced users.

8 Aesthetic and minimalist design:
Dialogues should not contain information,
which is irrelevant or rarely needed.
Every extra unit of information in a
dialogue competes with the relevant units
of information and diminishes their rela-
tive visibility to the user.

9 Help users recognise, diagnose, and
recover from errors: Error messages
should be expressed in plain language and
contain no codes (unless as part of an
error message that may help the trou-

bleshooting process). They must also
precisely indicate the problem, and
constructively suggest a solution.

10 Help and documentation: Even though

it is better if the system can be used

without documentation, it may be neces-

sary to provide help and documentation.

Any information should be easy to search,

focused on the user’s task. It must list

concrete steps to be carried out, and not

be too large.

Let’s look at a very simple example. A sales
system has a dialog for creating a customer
account (figure 1).

A system test for this screen would go into
the detail of each input field size, check the

Usability and
Reusability
Chris Ambler, Head of Testing Architecture and Strategies

at Newell & Budge, on usability testing with scripts

Figure 1: Account creation dialog

Edinburgh - London - Birmingham - Glasgow - Belfast - Dublin

• Consultants

• Risk-based Specialists

• Programme Managers

• Service Managers

• Test Analysts

• Mercury Tool Specialists

• Specialist Sales Staff

UK Software and Business

Testing Specialists

fulfil your resolution
For almost 20 years, Newell & Budge has remained at the

forefront of information technology, extending innovative

services and solutions to the UK and Ireland’s leading

companies.

Newell & Budge’s Testing Solutions Business is a leader in the

testing market, with major programmes being driven throughout

the UK for high street banks, major insurers, leading Telco's,

utilities and government. As a result, we are looking to recruit

more of the UK’s top calibre testing professionals on both a

permanent and contract basis.

You will be ISEB accredited (or ready to complete shortly after

joining us). You will have outstanding communication and

leadership skills, with a proven ability to work independently and

on your own initiative.

To apply, email your CV (Ref: TS01) to our recruitment team at

jobs@newellandbudge.com.

Alternatively, send your CV and covering letter to: Newell & Budge

Recruitment, Queensway House, 1 Queensferry Terrace,

Edinburgh. EH4 3ER

Ref: TS01

www.nandbtesting.com

With a passion for testing, you will be

looking to advance, joining a

company renowned for its quality,

professionalism and true market

independence.

Excited by what you could achieve in

2004? We are.

12 www.professionaltester.com • Professional Tester April 2004

formats, validate the credit checking interface,
check the screen outputs etc. and would need a
very detailed, step by step system test script
with detailed expected results. Any changes
that are made to the screen will need detailed
changes to the test script and test data. This
will have major impact on configuration
management and version control.

As usability testing is defined at a higher
level, a process scenario can be created and
each of the usability heuristics can be assessed
during the process. This usability test script
would look like the one shown in figure 2.

This test has raised a number of ‘potential’
defects. These defects may or may not be
important to the users, given the context in
which they are working. I am sure every
reader will come up with a different set of
‘issues’ with this example!

Usability testing needs to be more ‘subjec-
tive’ rather than ‘objective’. This creates the
need for the tester to understand the process
under test and be able to improvise the addi-
tions to the screens (as long as they are

documented). The major changes will occur in
the test data sets to ensure repeatability and
again, the experienced user/tester needs to
control these and document all changes.

If a change was made to the account
creation screen, for example an ‘ANNUAL
SALARY’ field was added, this would not
change the usability test script as the scenario
described has not changed. The only change
would be to add a test data item to the test data
set that would allow the user/tester to enter an
annual salary. This is only an extra column to
a test data spreadsheet or test data list and can
be controlled easily.

It is impossible to completely ‘future proof’
usability test scripts because there may be more
complex changes to the screen or changes to
the process itself. The best you could ever hope
for is to design them in a way that allows
changes to be made easily. This is achievable
as long as the key rules are remembered:

• usability testing is not about proving
functionality: it’s about verifying tasks

• iterative testing is best – knowledge of
the business processes is key

• test scripts should be built around
scenarios

• communication between users, testers
and developers is paramount

• the secret is not to have detailed scripts

• test data needs to be updated and
managed

Developers have been writing code and
testing it against scenarios for years, so it is a
tried and trusted technique and if the relation-
ship is good enough why not communicate
with the developers and look at linking the
development changes to the usability test
changes? Working with the developers and
the users on the required changes to the GUI
allows the tester to both understand the
changes and inform the users (and develop-
ers) what the impact of those changes will be.
It is possible to link these changes to business
risk and business priorities, but that is
another story… PT

USABILITY TEST SCRIPT – CREATE ACCOUNT TESTER: ______________

Process Scenario:

The salesperson enters the customer details on the left hand side of the screen. On completion of the details, the ‘CREATE
ACCOUNT’ button is clicked. The system then populates the box on the right, carries out a credit check on the applicant and
accepts or rejects the applicant. If the ‘ACCOUNT ACCEPTED’ is shown, a credit limit is displayed and the ‘OPEN ACCOUNT’
‘Y’ and ‘N’ buttons are available. If ‘ACCOUNT REJECTED’ is shown, then no credit limit is displayed and the ‘OPEN ACCOUNT’
‘Y’ button is greyed with only the ‘N’ available. The salesperson then clicks the relevant ‘Y’ or ‘N’ button

Test Scenario:_________________ Test Data Set: TDS001 Application Version: v2.01.a Environment: Test07

Expected Result : Successful account creation

Heuristic Comments Pass/Fail

1 Visibility of system status There is no visible means of showing the system status other than the
usual ‘timer’

FAIL

2 Match between the system and the
real world

All the terms used are consistent and have real world meanings (although
D.O.B. could be open to misinterpretation)

PASS

3 User control and freedom There is no obvious ‘emergency exit’. There is no way to exit the screen
until the process is complete, either successfully or unsuccessfully.

FAIL

4 Consistency and standards Consistency with the rest of the application is acceptable PASS

5 Error prevention There is no error prevention available to this screen FAIL

6 Recognition rather than recall Recognition and recall is acceptable PASS

7 Flexibility and efficiency of use The screen is flexible and efficient in accordance with its use PASS

8 Aesthetic and minimalist design The screen is not ‘cluttered’ and all information shown is pertinent to the
process under test

PASS

9 Help users recognise, diagnose,
and recover from errors

Errors can only be identified at the end of the process at ‘ACCOUNT
REJECTED’

FAIL

10 Help and documentation There is no help documentation FAIL

Figure 2: Usability test script

e-testing is an independent specialist IT consultancy

with a total focus in software testing - consultancy,

resourcing, training and offshore managed services.

We are currently hiring Mercury Tool Specialists to work with

clients across Financial Services, Telecommunications,

Banking and Retail Sectors.

e-testing Consultancy can provide you with the opportunity

to build a stimulating career working on different platforms,

technologies and exciting software projects.

To apply, email your CV to our resourcing team at

mercury@etesting.com or complete the on-line registration

form by visiting our website www.etesting.com

Mercury Tool Specialists

e-testing® Consultancy

Kinetic Centre,

Theobald Street

Borehamwood,

Hertfordshire, WD6 4PJ

Tel:� +44 (0) 20 8387 1701

Fax:�+44 (0) 20 8387 1706

Web:�www.etesting.com

CONSULTING RESOURCING TRAINING OFFSHORE

StarBase are a Mercury Interactive
top tier business partner

Automated Testing.
Are you maximising
the benefits?

Incisive solutions with integrity StarBase’s comprehensive suite of solutions support Mercury
Interactive’s ever expanding range of Automated Testing and
Application Management tools. Our Consulting services include:

Load/Performance Testing
“The Combination of StarBase testing expertise and CIMA
application design knowledge assured a successful project”
Guy Gaskins, Chartered Institute of Management Accountants

Automated Functional Testing
“Within Functional Testing, StarBase have proved themselves to
be much more than a service provider, they have evolved with us
to be a valuable extension of our IT department”.
Matt Cowdrey, AON

StarBase’s unique Advanced
LoadRunner Training
“Very enjoyable course with useful methodologies. We will be
adopting a number of the suggested working practices”
Richard Green, HSBC Bank

To maximise the benefits from your Testing
requirements call 0208 905 1120 or
visit www.starbase.co.uk

14 www.professionaltester.com • Professional Tester April 2004

As testers we know why quality assurance is
important. We understand that coding errors
or glitches in the way one component interacts
with another can bring down an entire applica-
tion and result in an organisation losing
thousands of pounds. Therefore it’s not
surprising that a great deal of testing effort is
put into making sure applications are reliable,
robust and will perform well under strain.
However it shouldn’t be forgotten that even
the most resilient application, containing code
written using best practices, could be
perceived as failing if it is not designed in the
way it works for the users. At the end of the
day what’s the point in building an application
if people find it too difficult to work with?
Most organisations understand this. In fact
ease of use is often the first thing on a
customer requirements list; however it’s also a
factor that is often neglected during the devel-
opment cycle.

This is where usability testing can help,
because it ensures applications are tested with
the user in mind. Essentially, it is about
looking at software design and trying to ensure
applications are designed in a way that makes
them easy to learn and use. This might seem
like an obvious thing to do, but many develop-
ment projects do not include any usability
testing. This is understandable as both devel-
opment and testing teams are under more
pressure than ever to go live with applications,
however if businesses want to ensure that they
see the benefits of investing in and developing
new applications; this is an area they simply
cannot overlook.

If you need convincing on usability testing
then simply consider the fact that we all come
in different shapes and sizes. Our physical and
psychological make up will impact the way we
use a computer application. In some cases,
culture and background may also be influences
to consider. Maybe, most importantly, the
experience of end users using an application
may vary dramatically and this will without
doubt impact how easy or difficult they find it
to navigate and use. For example, an experi-
enced computer user may decide to tab
through the different fields in a CRM system,
whereas a novice may choose to use the
mouse. It is these types of differences in

human to computer interaction which can be
captured and analysed in usability testing.
Subsequently trends can be identified in rela-
tion to how people want to interact with the
application and these trends can be then fed
back to the development teams who are
designing the user interface.

How do you carry out usability testing?

Opinions may vary on how to carry out
usability testing, but to me the starting point
should always be to find a group of users who
are inexperienced with the application. At the
very least you should bring in users who have
the same experience levels of those people that
will be using the application in the production
environment.

You should also try to ensure the user
group reflects the ultimate user base of the
application in relation to factors such as sex,
age, and background. However, in many cases
it may be difficult to predict the attributes of
the end users of the application being devel-
oped and therefore in this situation it is
important to use a diverse range of users in
the usability testing process.

Once you have your sample user base,
you should analyse the functional specifica-
tion for the application and pick a range of
standard tasks end users will be carrying out
in the application on a regular basis. If you
use manual testing methods it is at this stage
that you would ask your user group to carry
out the tasks. As testers you would try to
note down how users are approaching the
task and how they are navigating through
the application. Basically from start to finish
you would note down the steps the user
takes within the application to carry out and
complete the set task. The problem with this
is that is virtually impossible for you to note
down every single interaction the user has
with the application and even if you can this
is very time consuming, especially if you are
using a large user group.

An alternative method could be to create
test cases for the tasks you have chosen to
base your usability testing on and then use a
test automation tool. Understandably, you
may be wondering how you use a tool such as

this in usability testing, as the traditional use
for these tools is to repeatedly test whether
different functionality within the application
works. Well, the trick is to adapt your testing
tool and use it in record mode. As users carry
out the test cases or tasks you have given
them, the test automation tool will record
every interaction they have with the applica-
tion. The data recorded by the testing tool will
be collected within a test script, which can
then be analysed.

Testers should look for patterns in how the
application is being navigated and utilised.
Were there parts of the task that took users
longer to complete than expected? If so, why
was this the case? Is it because they found it
hard to find a particular function in the appli-
cation? Did they go to the wrong part of the
application? Was key information not promi-
nent enough? By analysing the test scripts and
asking these types of questions, testers can
highlight problematic areas in the design of the
application and ask developers to refine or
rectify these issues.

When do you carry out usability testing?

Usability testing should be started as early
in the development cycle as possible. You
should try to ensure that it is completed once a
prototype of the application is built. It should
then be repeated when major sections of the
application are complete and again when the
entire application is finished.

In addition, if the application is going to be
maintained and updated then it is advisable to
carry out usability testing before upgrades are
rolled out to ensure changes to the way people
interact with the application can be fed into the
design of the upgrade.

Although usability testing takes time,
money and resource, an understanding of how
users interact with the systems we build is
invaluable. Everyone involved in the develop-
ment and deployment of an application should
remember this and also never forget that the
usability of a system will make or break the
uptake of it. PT

For the record
Sarah Salzman, technology support manager for Compuware

UK and Ireland, explains her view of usability testing and how

how test automation tools can help with it

64% of IT Executives say Yes… having
experienced material revenue loss as a
direct result of application failure*

In today’s competitive environment, IT departments need to release increasingly rich feature sets across
complex distributed infrastructures. To reduce the risk of costly errors, analysts such as Forrester Research and
Patricia Seybold, recommend an Automated Software Quality (ASQ) solution.

To learn how your software projects can be a third less expensive** and to download your ASQ information
pack with Patricia Seybold white paper, visit:

www.compuware.co.uk/money
* Forrester Research - 2003 ** Patricia Seybold Group - 2003

Are your applications
leaking money?

www.compuware.co.uk

16 www.professionaltester.com • Professional Tester April 2004

Q1 Which of the following best describes your organisation’s

primary business or industry? (tick one):

❍ IT services

❍ retail

❍ government

❍ financial

❍ insurance

❍ utilities

❍ pharmaceutical

❍ other: _______________________

Q2 How many people currently work in performance

management or QA engineering/management at all

locations throughout your organisation? (tick one)

❍ zero: not currently staffed

❍ 1 or 2 people

❍ 3 to 5 people

❍ 6 to 10 people

❍ more than 10 people

❍ I’m not sure

Q3 In your opinion which of the following issues concerning

application and performance testing are affecting your

organisation? (tick all that apply)

❍ testing solutions we have looked at do not enable

collaborative involvement of professionals representing

multiple IT disciplines and lines of business

❍ we lack time to perform proper, comprehensive

application and performance tests

❍ performance testing is difficult to implement and thus

difficult to justify

❍ it’s difficult to customise tests to obtain precise answers

to specific questions and conditions

❍ it’s difficult to justify costs and maintenance fees,

particularly for smaller testing projects

❍ it’s difficult to demonstrate return on investment in
performance and application testing

❍ other (please give details)

Q4 What method/approach do you currently use most for
application and performance testing? (tick one)

❍ manual approach (scripts)

❍ automated approach

❍ we don’t do application or performance testing
(please state why not):

Q5 Have there been occasions when you would have liked to
have conducted application and/or performance tests, but
did not?

❍ no

❍ yes, because:

❒ the cost was thought too high

❒ insufficient time was available

❒ the small size of the project made it difficult to justify
the investment

❒ an appropriate solution could not be found

❒ other (please give details)

Q6 In your opinion, how aware is your executive management
team of your critical application and performance testing
issues? (tick the best answer)

❍ fully aware, with approved budget and sponsorship

❍ fully aware, but affected by limited budget

❍ somewhat aware

❍ not aware

❍ I’m not sure how aware they are

Performance testing
survey 2004
We invite all Professional Tester readers to participate in Embarcadero Europe’s

informal survey about application and performance testing for enterprise systems.

Results and analysis will appear in the July issue

April 2004 Professional Tester • www.professionaltester.com 17

Q7 What features would be included in your ideal application

and performance testing solution? (tick all that apply)

❍ integrated relational repository

❍ real-time, team-based collaborative testing

❍ facilitation of goals-based testing

❍ single console for managing all aspects of the testing

cycle: environment setup, test creation, test execution,

test analysis

❍ open, standards-based architecture

❍ performance analysis

❍ simple script record/replay

❍ comprehensive script paramatisation/randomisation

❍ wizard-driven Interface for key tasks

❍ quick installation with auto-configuration

❍ usage-based pricing

Q8 In your opinion, what is the most important feature or

function that an application and performance testing tool

should have? (please specify)

Q9 Are you planning to purchase an application and

performance testing tool? (tick best answer)

❍ in the next 1 to 3 months

❍ in the next 4 to 6 months

❍ in the next 7 to 12 months

❍ in the forseeable future, but timeframe is not yet decided

❍ not in the forseeable future

❍ I’m not sure

Q10 Please tell us about yourself and your organisation. This
information will not be included in the survey and will not be
shared with any other party.

Name: _________________________________

Job title:________________________________

Organisation name:______________________

Postal address: _________________________

Daytime telephone: ______________________

Email:__________________________________

Embarcadero Europe offers a complete set of application

and data lifecycle management solutions that help leading

companies build, optimise, test, and manage their critical

data, database, and application infrastructure. Please

indicate whether and how you would like to receive

information about our award winning products.

❍ Extreme Test (application and performance testing)

❍ DT/Studio (data integration)

❍ ER/Studio (data modelling)

❍ DBArtisan (database administration)

❍ Rapid SQL (database development)

❒ I prefer to receive this information by post

❒ I prefer to receive this information by email

❒ no, please do not send me any information

Please return this form (photocopies are acceptable)

to Emma Estrada, Embarcadero Europe, Thames

House, 17 Marlow Road, Maidenhead SL6 7AA, UK.

You may also complete the survey online at

www.embarcadero.com/survey.html

WIN A WIFI HOTSPOT DETECTOR!
To thank readers for contributing
to this survey, Embarcadero
Europe is giving away this year’s must-have gadget: the
pocket-sized Smart ID 802.11b and 802.11g wifi
detector, which enables you to find out if you are in a
hotspot without turning on your laptop! Everyone who
completes the survey will automatically be entered into
the prize draw and the first ten selected at random on
21st June 2004 will receive a detector.

18 www.professionaltester.com • Professional Tester April 2004

For public-facing web applications which are
intended to attract and retain users, good
usability is as critical as correct functionality.

This article suggests a method, designed for
use by testers carrying out functional testing of
a public-facing website, to improve usability
at the same time as, and as part of the same
activity as, assuring correct functionality. It
may also be of use in some non-public-facing
applications, eg intranets and extranets.
However usability of these is often considered
to be of less importance because poor usability
can be compensated for by user documentation
and training and because the users generally
have no or less choice as to whether or not to
use the application.

What is web usability?

BS 7925 defines usability testing as testing
the ease with which users can learn and use a
product. IEEE 610 defines usability as the
ease with which a user can learn to operate,
prepare inputs for, and interpret outputs of a
system or component. Both of these are hope-
lessly vague.

For a list of similar (and mostly similarly
useless) definitions Google for “usability defi-
nition”. The problem with nearly all of them is
their reliance on the relative term “ease” (or
similar alternatives such as “user-friendly”).

Although many meanings can be applied to
these terms, there are two main possibilities:
“easy” can mean “straightforward” or it can
mean “efficient”. This article is about the
former, ie how we as testers can help to
increase the ease with which users of a web
site can discover how to operate it correctly.

The so-called “usability standard”,
ISO 9241, is almost exclusively concerned
with the latter meaning; it, and most other non-
testing sources, describe what most people
(including the standard itself) call “ergonom-
ics” rather than usability. Poor ergonomic
design in software, generally speaking, is
obvious and detected early in development.
Even if this is not the case and it falls to users
to complain that they are being required to

repeat tasks or do manual work unnecessarily,
such defects are usually easy to fix. However
ISO 9241 does give us the best definition of
usability so far: the extent to which a product
can be used by specified users to achieve spec-
ified goals with effectiveness, efficiency and
satisfaction in a specified context of use.

A third school of thought says that usability
is “whatever the user wishes to define it as”.
While this is obviously an admirable senti-
ment, it seems of little practical use.

When our ultimate aim is to increase
usability by testing, it is better to take the
negative view and define what usability is not;
that is, to define a usability failure. For a
website, this is one of three occurrences:

1 The user makes a mistake

2 The user becomes unsure what to do, or
whether what they have done is correct

3 The user misunderstands the meaning of
information imparted by the site.

Heuristics are for designers, not testers

Many of the most often suggested
approaches to usability testing involve
compring the design features of the site under
test to advice given by various commentators
on usability, also known as “usability gurus”.
The most famous of these are Jacob Nielsen
(see www.useit.com), Vincent Flanders
(www.webpagesthatsuck.com) and Steve Krug
(www.sensible.com). These sites, and the inter-
esting books written by these and similar
authors, contain examples of good and bad
usability and advice on which navigation and
other design features tend to cause usability
problems. Nielsen, in particular, has listed
general principles (he calls them “rules of
thumb” or “heuristics”) for user interface
design. All web designers should read at least
some of this material.

Now, imagine yourself as a tester speaking
to a designer/developer: “I’ve seen this feature
on your site and Nielsen says you shouldn’t
have done it. His explanation of course is a
general rule of thumb (or another guru gives a
specific example which refers to a different

site and is set in a different context), but as far
as I can tell with my limited knowledge,
understanding and practical experience of web
design you’re in the wrong and should be crit-
icized and made to redo it the way I think it
should be”. The likely effect on the tester-
builder relationship, project morale and the
final product is obvious.

Keep your opinions to yourself

The second type of usability testing is often
carried out informally thoughout the develop-
ment process, and usually does more harm
than good. It’s natural for people to form opin-
ions on the site; the subject may range from
specific details (“users won’t understand what
the wording of that link means”) to broad
generalizations (“they shouldn’t have designed
the navigation like that, they should have done
it more like my favourite site”). These opin-
ions, especially the broader ones, are valuable
early in development, and should be taken into
account by those making decisions.

Once those decisions have been made
however, further expressed opinion becomes
damaging because it undermines the work
already done and gives rise to change - with all
the loss and risk that implies - for no clearly-
defined or traceable reason.

Persons who have been exposed to the
design of the site, or who have knowledge of the
underlying business processes, cannot predict
what users will understand or do. To do so
would require the ability to “pretend” that one
does not know what one does know. In many
years working on web sites – right from their
earliest days – I have never met anyone who can
do this, from the most intuitive programmer, to
the most experienced interface designer, to the
most analytical and methodical tester. Their
knowledge of the project makes them “tainted”
and their opinions on usability worthless. Even
so, their hunches may in fact be correct; but
there is no way to check this.

Managers need to draw a line much earlier
in projects beyond which the opinions of tainted
persons, including themselves, are discounted
and discouraged. After this point has been

Not a matter
of opinion
QBIT’s web testing course presenter and PT editor

Edward Bishop believes web usability testing must be objective

Cresta Testing – accident prevention
through test driven development

Ensure that you conduct the testing of your mission critical systems early in the project
lifecycle through Cresta’s Structured System Testing Methodology™ (SSTM™). Reduce risk
and cost through the customisable Processes, Tools and Techniques which allow you to
effectively manage and execute the complete lifecycle of testing within a project.

Cresta Training – where accidents
should happen

Fully exploit your investment by turning WinRunner & LoadRunner into “wealthware”
through educating staff in testing, quality processes and effective test automation.
Cresta provides a broad range of renowned software quality and testing courses, including
ISEB Certification in Software Testing, Mercury Interactive TestDirector, QuickTest Pro,
WinRunner and LoadRunner.

For more details, contact Karen Espley on +44 (0)870 1600 333, email info@cresta.net
or visit www.cresta.net/testing_training.php.

www.cresta.net
Proving the difference

20 www.professionaltester.com • Professional Tester April 2004

reached, change should be allowed only if
based on empirical evidence. Otherwise, the
final design is likely to be influenced mainly by
those persons with the loudest voices and/or
most manipulating personalities. The dreadful
end results of this syndrome can be observed at
any of thousands of hard-to-use websites, many
owned by very large organizations.

Usability trialling is not a test technique

One well-known way of gathering that
empirical evidence is to introduce untainted
persons in order to observe them using the site
and ask their opinion. Some of the usability
gurus advocate this, and much advice on
various ways to carry out such an exercise
(often called “user testing” or “usability
trialling”) can be found at www.usability.gov
and www.usableweb.org.

The exercise can be very enlightening
and interesting. However from the testing
point of view there are several fatal, and
unavoidable, flaws:

1 There’s no way to know if the abilities of
the subjects are typical of real users

2 Trials can’t be done until late in develop-
ment when change probably means very
expensive rework

3 Any rework carried out as a result must
then be retested (see 1)

The last is the most serious. The trial is
likely to report that a large proportion of
subjects made mistakes, encountered difficulty
or expressed dislike of certain features or points
in navigation of the site. However the subjects
are far less likely to agree on what change could
be made to improve matters – it must be
remembered that they do not have a design or
IT background (they could not be representative
of users otherwise) and have been given only a
few minutes to think about the site. Their opin-
ions, although they may give useful insight,
must not be used as a design.

So instead the findings are given to the site
designers and they are asked to act upon them.
But they have already tried to produce the best
and most usable design they could: their first
reaction may well be to say “despite the trial’s
findings, we think this part of the site is
already as good as it can be” – in which case,
there was no point carrying out the trial.

Otherwise, the designers must now think of
even better ideas, or else readopt alternative
ideas they had previously rejected. In either
case, there is no way of knowing whether the
new version is better than the old; the only
chance of finding that out is to repeat the
usability trial with new, untainted users. That
will probably give rise to another, similar set
of results suggesting shortcomings, perhaps in
the same places as before, for reasons which
are unknown: perhaps the subjects have less or
different abilities than the first group, perhaps

they are judging the features relatively and
picking out the “worst” rather than the “bad”,
or perhaps the designers’ first attempt at a
given feature was in fact more usable. So we
now have a situation where two expensive
trials have been done, and perhaps more are
needed, with no certainty of conclusive results
at any time.

The best way to do usability testing is
to do testing

If we as testers are ever going to help to
provide more usable sites to users, a test
method is needed that

1 is more objective and does not depend
upon opinion

2 can be done by testers without the use of
untainted subjects

3 can be started earlier and continued for
longer, improving usability gradually
throughout development

4 is economical enough for use in web proj-
ects with short timescales and frequent
change of requirements and design for
reasons other than usability issues.

Objectives 3 and 4 can be achieved by
performing usability testing not only in paral-
lel with but as part of the same activity as
functional testing. The key to being able to do
this in the test design phase: web testing
scripts should provide opportunites for testers
to detect usability issues. This means writing a
script whose input section (often called
“actions” in web testing) describes what the
person executing the test should do to exercise
the functions but avoids mention of how they
should go about it.

The very granular scripts used for non-web
testing, featuring step-by-step instructions,
confirmation of the expected outcomes at each

step, and individual traceability of every step
to a business objective, are not appropriate for
web testing. Users of a public web application
will not have such guidance and will probably
not be prepared to invest much effort in learn-
ing how to operate the interface. Writing such
a script assumes that the developers and testers
can predict the navigation choices and other
inputs made by the user, and it is the unpre-
dictable deviations from this prediction made
by real users that give rise to severe usability
failure and which testing should aim to detect.

Nongranular scripts such as that shown in
figure 1 give exactly the same benefit to
analytical testing: the scripts describe the
system from the test analyst’s understanding of
the requirements, thus providing a check that
the developers’ understanding is the same, as
well as helping to guide the developers in
directing and prioritizing the development
effort with the intention that all the tests will
be passed first time. However they can also
provide effective usability testing during the
empirical phase which granular scripts cannot.

The starting point for a script should, of
course, be a functional test objective. The most
difficult part of writing a nongranular script is
getting the correct level of detail. This is a skill
learned quickly with practice. The script
shown in figure 1 is a good example but was
not written like this at the first attempt; rather,
it is the result of a refinement process. Start by
writing the steps as they come to mind, and
then pass through them looking critically for
ones which can be simplified because they
give unnecessary detail or eliminated because
they are not essential to the test objective.
Incidentally, a similar process can be applied
to the entry criteria for each test, enabling
testing to be done earlier, when fewer items
have been released.

Test 15c: To show that a bill of value more than the current balance of
account cannot be paid
Entry criteria

• function 15 ‘Pay a bill’ and function 3 ‘Check balance’ released for testing

Actions

1 log on to use home banking

2 obtain the balance of the account to which you have logged on

3 attempt to pay a bill of value exceeding the balance of the account

4 check the balance of the account again

Exit criteria

• balance checked successfully at least once

• bill payment details displayed for confirmation reflect user input correctly

• bill payment can be confirmed

Expected outcomes

• after confirming bill payment, information that bill cannot be paid appears

• the displayed balance of the account remains unchanged

Figure 1: Nongranular, requirements-based web test script

AUSTRALIA FRANCE GERMANY ISRAEL SINGAPORE UNITED KINGDOM UNITED STATES

£ATTRACTIVE + EXCELLENT BENEFITS + TRAINING + RAPID CAREER PROGRESSION

If you ignore these opportunities,
it’s not just software you

should be testing

We are the world’s largest and fastest growing independent IT performance assurance consulting group, with
offices in 13 countries and over 550 consultants, including more than 100 in the UK. Our comprehensive,
unbiased range of testing solutions – from specific expertise to full outsourcing – use automated testing tools
across all platforms, applications, networks and operating systems over a range of sectors including financial
services, telecoms, defence, public sector, retail and leisure as well as healthcare.

TESTING PROFESSIONALS ALL LEVELS — ANALYSTS, SENIOR TESTERS,
TEST TEAM LEADERS & TEST MANAGERS
We have very ambitious plans for expansion in the UK, where we expect to grow by 94% and increase headcount
by 60% in 2004 alone, and seek equally ambitious people who would thrive on working on high level projects,
both locally and as part of international teams.

You will need a minimum of two years’ relevant experience, good client and consultative skills, the personality and
flexibility to thrive as part of a team in a global organisation as well as the ability to learn quickly and the
drive to get things done. We are particularly interested in people whose background includes any of:
Peoplesoft/HR Programs; SMS; MMS; WAP; LoadRunner; WinRunner; Rational Tools; Java; Biztalk; .NET;
Set Top Box/Digital TV.

Our exceptional client base, variety of new projects and range of sectors mean the opportunities for personal and
professional growth with Tescom are immense – and we are dedicated to rapid promotion from within.

So why not join us? And test yourself to the full. Please send your CV to jobsuk@testcom-intl.com or post it to
Tescom Direct, Tescom International, 21-22 Great Sutton Street, London EC1V ODN. www.tescom-intl.com

22 www.professionaltester.com • Professional Tester April 2004

Objectives 1 and 2 are achieved by
recording every usability failure experienced
during testing, in exactly the same way that a
functional failure is raised. This requires a
certain amount of discipline from the persons
executing the tests and recording results;
however it is not necessary for these persons
to be untainted.

The script shown in figure 1 was created
from its test objective, which was based on a
description of a function, which was derived
from business requirements. All this was done
before any design work had taken place and so
the script does not contain any assumptions
about how the user will access that function.
Such a script can be executed by its author so
that in very small projects all the testing can be
done by one person. Very often in web projects
early screen designs are available at the same
time as or even before requirements and this
may enable more detailed scripts to be created
which do refer to specific screens and objects
by name. A discussion of which type of script
is best is not in the scope of this article, but it
should be understood that scripts of the second
type contain an implicit assumption that the
user – who does not have access to these names
– will recognize the purpose and meaning of
the screens and objects. To check this assump-
tion such scripts must be executed by someone
other than their author; this means that in small
projects all the testing could be done by two
people, sharing the test design and execution
work equally. In either case, however, during
the empirical phase more people can be
enlisted if necessary to execute scripts.

The point of writing scripts without guid-
ance as to how to proceed is to make the
knowledge and ability of the text executors
irrelevant. Obviously proficient web users, or
those with a knowledge of the system under
test or its underlying business processes, will
tend to experience fewer usability failures.
However when they do, it is very likely that
less proficient or knowledgeable users will
experience the same failure. A long list of
errors made by inept users is of little value;
those users would probably experience similar
difficulties on any site, and in any case their
ability is beyond our control. A shorter list of
errors and other usability failures recorded by
experienced testers is an accurate guide to
where the most severe usability faults lie;
addressing these will lead to improved usabil-
ity for users of all proficiency levels.

Failure is a fact, not a feeling

When executing a test, from time to time
the tester will experience a usability failure;
one of the three types listed above. The tester
must be familiar with this list and sufficiently
disciplined to be aware of and record each
failure just as they would a functional failure
or anomaly.

The first type, “the user makes a mistake”,
will typically include failures such as:

• user navigates to a page which was not
expected

• user revisits a previously-viewed page
inadvertently

• user enters invalid data to a form and is
asked to amend

Failures suggesting these might be reported
by the tester, respectively, as comments such as:

“When I clicked the “My account” link I
expected to get a page that would let me log on
and was surprised to see that it meant an
explanation of the types of account available”

“I selected “recent transactions” from the
dropdown list when trying to check if my
standing orders were active for step 4. I didn’t
expect that it would lead back to the page
showing what I’d done in this session, to which
I’d already been at step 2”

“I didn’t notice that I could not choose a
password less than 6 characters long and my
first choice was rejected”

These are obviously most likely to be
noticed the first time a tester runs a given
script, but sometimes testers will find by acci-
dent later in the script, when executing the
script again (eg for compatibility testing), or
when executing another script that they have
been operating under a misconception and so
experienced usability failure previously:

“I’ve just realized that up until now I’ve
been going round the long way by selecting
‘music’ then ‘CDs’ then ‘popular music’ then
‘70s’ when I could have just selected ‘Great
70s Pop’ from the dropdown on the front page.
I ignored this link before because I thought it
was just the title of an album being promoted”

The second type, “the user becomes unsure
what to do, or whether what they have done is
correct”, might manifest itself as follows:

• user is not sure which link to click to
see information they want

• user does not know what they should
enter in a field

• user is uncertain whether they have
entered a user transaction or not

which could be experienced and recorded
by the tester as, respectively,

“At step 4 (order a 128MB DIMM) I was
unsure whether I should select “computer
upgrades” or “computer components”

“When entering my account number at step
3, I wondered whether or not I should include
the dashes”

“When the ‘track your order’ screen
appeared after I submitted the order form and
stated ‘order not yet picked’ I was not sure

whether this meant I had placed my order
successfully or not”

The third type, “the user misunderstands
the meaning of information imparted by the
site”, is the rarest; however if it occurs after
deployment it can sometimes have severe
business impact. It is usually one of the
following situations:

• user selects incorrect product based on
what they think the content means

• user proceeds incorrectly in the real
world based on what they think the
content says

• user misinterprets information or
instructions on the site as advice

These are not usually reported directly by
the tester; like the user, he or she can make
mistakes of this type and remain unaware of
the fact. However, they are sometimes
prevented indirectly by the results of func-
tional testing with a usability element; for
example when examining a back-end database
to ensure that transactions have been recorded
correctly, it might be noticed that a tester has
ordered a product which does not fit the crite-
ria in the test script. More often, the tester
realizes that they have been operating under a
misconception and records something like:

“I’ve just realized that the colour of the
model car is not shown in the photo but in that
little box underneath. I’ve been ordering the
wrong colours”, or:

“I’ve just been surprised to find out that the
‘buy this share’ button appears on every page.
On most of the ones I’ve looked at it’s been
scrolled off the bottom. I thought we were using
it to recommend certain shares to users and
might have chosen those shares as a result”

This last example actually occurred after
deployment of a share dealing site and affected
some users. It could not have been detected by
error-guessing techniques such as checklists of
site heuristics, and it is unlikely that inexperi-
enced users performing a trial would have
noted it. However usability testing of the type
described in this article would have stood a
chance of detecting it.

They all count

It is vitally important that testers are aware
and bear in mind throughout testing that:

1 They must record every usability failure,
even if they feel it is a result of their own
lack of concentration or knowledge; users
will be affected by exactly the same
factors

2 Failures must be recorded even if the
tester feels he or she could or should have
noticed and recorded them earlier; testers,
like users, will notice and deduce more
about the site over time

3 One of the objectives of this method is to
eliminate opinions and base change on
empirical evidence. A tester may believe
that a feature of the site will cause prob-
lems to some users and should be
changed; however there is no way of
knowing whether they are right in this or
not. In contrast, when an error is recorded
by a tester he or she is attesting to the fact
that a usability failure occurred. It is
conceivable (but would seem, intuitively,
unlikely) that a tester with a strongly-held
opinion might introduce a failure report
designed to support that opinion.

If these guidelines are followed test execu-
tion will produce a potent deliverable: a stream
of failures experienced during realistic use of
the site, indicating precisely those points where
it is important to improve usability. These must
not be ignored by development; “we think this
was caused by the tester, or an unlucky coinci-
dence, and we don’t want to change it” is not an
acceptable resolution. Every failure recorded
should cause a change to the interface, and if
necessary the underlying system, which
attempts to prevent that or similar failure
happening again, during testing or after deploy-
ment; and that change should not be a reversion
to a previous state which, by definition, has also
been shown to give rise to usability failure.
Often the change will be as simple as rephras-
ing or increasing visual prominence of text or
an object; occasionally it may involve rethink-

ing the grouping of information and form fields

into pages or the navigation paths and methods

offered to the user.

Sometimes a change will be made which is

ineffective or actually makes the same or

another usability failure more likely; if so,

these failures will come to light as testing

proceeds. The aim is not to attempt to maxi-

mize usability of the product in one “big bang”,

but to improve it gradually as testing and

development proceeds, in the same way and at

the same time as functionality is improved.

Because the functional tests have been

prioritized by their relationships to functions

and thus to business objectives, the more

important faults should come to light earliest

in the testing, and as testing and rework

proceeds the frequency and criticality of faults

reported should gradually lessen. More impor-

tantly, there will be more time to work on the

faults associated with critical and/or popular

functions; if change leads to further failure

reports there will tend to be time for further

change and further testing until failure reports

related to the changed items cease. As the

project nears its close, faults found during

execution of the lower-priority tests will have

less time to reach stability; so the success of

this approach depends upon accurate prioriti-

zation of the functional tests.

Summary

Using this method usability changes made
to the site are based on empirical evidence –
the fact that a usability failure was observed –
not subjective opinion. The evidence is gath-
ered during the activity which must be carried
out anyway: functional test execution. The
number of faults detected, and the chance of
detecting those which are hard to find, is
increased due to repetition of navigation and
other actions and the fact that testers have
more time to think about their use of the site
and are relieved of the very difficult mental
exercise of trying to pretend they are a user.
The best use is made of the testing time avail-
able since usability testing starts at the same
time as functional test execution and is auto-
matically prioritized by its association with
functional testing.

The main disadvantage of this method is
that the nongranular test scripts do not lend
themselves to automated execution; or, to put
this another way, automated testing cannot
help with usability. However it might be possi-
ble to gain the main advantage of automated
testing – faster and more reliable functional
regression and maintenance testing – by creat-
ing an automated test suite near the end of the
first phase of test execution when the
frequency of usability failure reports has fallen
and further major changes to the user interface
become less likely. PT

Qua l i f i ed t o su c ceed

ARE YOU SURE YOU’RE MAKING THE RIGHT TESTS?
WHEN TESTING SOFTWARE YOU NEED TO BE SURE
YOU’RE WORKING TO THE HIGHEST POSSIBLE
STANDARDS – EVERY TIME.
ISEB Software Testing qualifications give you all the assurance you need.
The Foundation Certificate is proof of an excellent basic understanding;
the Practitioner Certificate demonstrates in-depth knowledge and ability
to carry out testing. Internationally recognised, they are the IT industry’s
gold standard and evidence your staff and your testers work to best
practice. How’s that for a competitive edge.

www.iseb.org.uk/pt

For information contact Customer Support: Tel: +44 (0)1793 417542 Email: isebenq@hq.bcs.org.uk Quoting reference number: 856/0304. The BCS is a registered charity: number 292786

M
TG

/A
D

/8
56

/0
30

4

VACANCIES FOR MANUAL & AUTOMATED TESTERS
SDLC Solutions, the test consultants, are winning new business in a number of
industry sectors.We pride ourselves on commitment and delivery, and our
clients agree.We need testers who share our vision and our passion.

We offer a full and open career path
We encourage you to develop in the way that suits you
We’ll train you in testing techniques, testing methodologies, and management
We’ll train you in automated tools
All our testers go through ISEB certification

If you’re interested in joining our fast-moving, rapidly-expanding company, email
m.chan@sdlcsolutions.com, quoting reference: PT05 or call us on 01625 521093

Public ISEB Practitioner course running in June. Call for details

“SDLC’s enthusiasm and energy
provides motivation that I have
not come across before, and this
has filtered through to full time
testing staff at all levels”
(Client Test Director)

Committed to Efficient Testing

www.sdlcsolutions.com

24 www.professionaltester.com • Professional Tester April 2004

The business environment of the automotive
industry is a dynamic one, with changes like
the ending of the European “block exemption”
looking set to transform already complex rela-
tionships between manufacturers, dealers and
customers. Anyone providing software to this
industry needs to update their product
frequently; it is vital they can do so without
disrupting existing functionality.

Compuware customer Kerridge
Automotive Systems has been able to keep up
and move ahead of competitors by applying
the latest automated testing techniques to its
dealership product, Autoline.

Taking quality seriously

Kerridge has been in business for a quarter
of a century and uses Autoline, a comprehen-
sive dealership management system, to take
care of all business processes. It is developed
using Kerridge’s bespoke programming
language, KCML. The Autoline product is
continually being updated in a six-monthly
development cycle by the central in-house
quality assurance (QA) team. Testing is a
constant process, with programmers taking
responsibility for thoroughly unit-testing
their own work, before passing ‘frozen’ code
on to the dedicated test team for independent
integration testing prior to release.

Kerridge’s manual testing (following any
change) focuses on the modules that have been
modified and on the surrounding functional
area - the area most likely to be affected by the
change. However, software developers know
only too well that there is a small but signifi-
cant chance that a change will affect an
apparently unrelated area of the application.
Such knock-on effects can only be discovered
by regression testing which involves re-testing
the entire product prior to releasing it for
general use. Carried out manually, this would
have been an extremely expensive and time-
consuming task.

As Autoline’s customer base had grown
internationally, the question of regression
testing became more pressing. Now that they
were selling into many more countries, the
cost of correcting problems after release would
be much greater than when they had only three
or four markets, so they needed to do every-
thing possible to identify and correct any

problems before distributing the software.
Consultants in each country re-test the soft-
ware after carrying out localisation and
translation and before implementation at
clients’ sites, but Kerridge wanted to be certain
these local consultants had a robust core to
work on. This also applied to the importer
management systems and fleet management
software that Kerridge provides to the automo-
tive industry, as both these systems also use
Autoline as their development base.

Creating Test Conditions

At the time when regression testing was
becoming an issue, the Kerridge QA team
recognised that automated testing tools could
make an end-to-end test feasible, both techni-
cally and commercially. They selected a suite
of tools including Compuware’s QARun for
functional testing and QADirector for
advanced test management.

Good object level recognition of an applica-
tions components (edit controls, tree views etc)
is fundamental to achieving robust regression
test packs. Kerridge used the tools to analyse
and generate objects and test scripts that are
both efficient and easily understandable.
Recording a test script is a simple two-step
activity. The first step is to navigate the required
test path creating and naming objects as
required. The second is to record the test script.

The Kerridge testing experts already had a
clear idea of what they wanted to do. Rather
than undertake a small-scale pilot, they put the
tools to work in earnest. Careful thought was
given to the processes that every dealership in
every country would do every day, and a list of
140 basic processes, such as taking cash from a
customer or selling a part at 10% discount, was
produced. The plan was to put together a suite
of tests that would allow Kerridge to carry out
end-to-end testing of all these processes when-
ever anything in the system changed. Having
documented their test conditions, the team
began to use the tools to create the scripts that
would execute the tests. After an initial training
session to make sure everyone understood what
was achievable, they were able to get to work.

End-to-end testing

The team has now built up a ‘test cata-
logue’ consisting of the 140 basic scripts. It
has also created a standalone replica of a

typical customer system in the field as the
basis for running the tests – a test-bed which
can be restored after each test run. Now, when-
ever there is a new version of the software,
whether for a bug fix or a major release, the
tests can be run quickly and the results auto-
matically checked. The only significant human
effort required is to check the results for high-
lighted exceptions, where the actual results do
not match the expectations, and to follow up
on these cases. There is virtually no overhead
involved in increasing the volume of test data.
Because the test is almost entirely automated,
the only extra resource needed to build up the
volume is disk space.

It is planned to expand the test catalogue
gradually to cover more functions, Kerridge
are determined to retain a modular test design
based on simple modules. Rather than have
huge scripts that test extensive processes, they
will keep them short and simply assemble a big
test sweep from multiple scripts. This philoso-
phy helps to keep the overhead of script
maintenance under control. Kerridge always
recognised that there would be work involved
in maintaining automated tests, but believed
the benefit would justify the effort, and have
now been proved right. A process is now in
place for keeping the scripts up to date. In most
cases all that will be necessary is to re-record a
single script because there’s an extra field on a
screen or the order of fields has changed.

International testing

The test catalogue is distributed to all of
Kerridge’s operations and distributors world-
wide as a basis for their own testing. Larger
operations may decide whether to automate
their tests; some are already in touch. Each
operation could use automated testing tools to
record its own scripts using the localized
versions of the screens and then test the
various levels of customisation: country
specific, franchise specific, and bespoke.
These different levels of customisation make
local testing complex, so automation could be
very valuable.

Autoline is a versatile product, but one that
must be constantly revisited it to make sure it
meets current market needs. Kerridge is now
able to take a proactive approach to testing all
these changes and avoid “being caught on the
back foot”. PT

Changing gear
Regional technology manager Mike Lucas explains how Compuware helped

to implement regression testing of a constantly-changing product

Automated Testing
Just Got Easier

Call now on 01344 297 613
Download evaluation at: www.seapine.co.uk

Rapidly create
automated test scripts
for Windows and Web applications

REGRESSION TESTING TOOL

Powerful capturing capabilities

Easy database connectivity

Powerful checkpoint engine

Browser-based toolbars

User Friendly Graphical Interface

Multiple filtration systems

Organisational tree

Highlight Indicators

For more information please contact:
T: 01293 44 00 22 E: info@missiontesting.com
W: www.missiontesting.com
Mission Testing is part of The Capita Group Plc

• Consulting • Education
• Recruitment • Managed Services

Our specialist experts understand your testing needs and respond with clarity to
help you to improve quality, maximise return on investment and reduce risk

Mission Testing is the leading independent testing solutions
provider in the UK

comprehensive testing solutions and
for their business

Our clients demand

the very best results

‘

‘

26 www.professionaltester.com • Professional Tester April 2004

A test automation architecture is the same as
a software architecture but built in the
language of the test tool. But what is a soft-
ware architecture?

What is an architecture?

“The software architecture of a program or
computing system is the structure or structures
of the system, which comprise software compo-
nents, the externally visible properties of those
components, and the relationships among them”
–Software Architecture in Practice, Bass et al,
(Addison-Wesley 1997)

So, a software architecture is the structure
of the source code and the relationship
between the components. In civil engineering,
the architecture is the overall structure of the
building. The architecture provides the space
for the functional use of the building and ulti-
mately is the major factor affecting how
successful it is at fulfilling its purpose.

We have already seen that scripted test
automation consists of code and is really a
product of software engineering, therefore it
should have a good architecture to be success-
ful. Little wonder that test automation does not
get very far when left to junior programmers
or testers when they have some spare time. No
matter how hard-working these people may be
it is too much to expect them to create a good
architecture. They are often too busy with the
low level detail to be able to see the overall
structure and do not have the software engi-
neering experience to design architectures.
They are builders, not architects.

A good test automation architecture
provides structures for logging and error

reporting and allows recovery to be incorpo-
rated (dropping failed tests, navigating the
system to a base point and continuing with the
next test). It will have libraries of reusable
functions in much the same way as any other
software system. Most importantly of all its
structure will minimise the code maintenance
overhead and thus it is the starting point for
success with test automation.

Advanced test automation architectures
are really the logical place to go when you
take a software engineering approach to
building test automation. So how do
advanced automation architectures differ
from the basic data driven approach?

In order to illustrate this, let’s first look at
some data used in data driven automation (see
figure 1). In this example of Excel test data,
every line (except the heading line) has
customer details in it. Column 1 is the
surname, column 2 the first name etc.

In the test tool there will be a
function which repetitively reads in
this data and inputs it into the ‘Add
customer’ windows or screens. Most
basic data driven architectures for
more complex
systems involve
many different
data files for the
different types of

business functions and many
automation programs to
input the data.

One of the main disadvantages of the basic
data driven approach is that the automation
pumps data into the system in an unnatural
way. Most regression tests are not about repet-
itively inputting similar data into the user
interface; rather they seek to fully exercise all
of the business functionality of the system
under test in a realistic way.

Automated testers have recognised this for a
while now and some provide a solution for it
by adding in another layer to the automation
which specifies the order in which data is used

from the various files. For example in an insur-
ance system, the extra layer would select the
customer data to add, then select the insurance
policy data to add for that customer and so on.
This however becomes a mess architecturally.

What the advanced architectures do is take
(at least some) of the navigation and actions
out of the test programs and put them into the
test data. The test data becomes the script—the
sequence of actions to be followed. It tells the
automation code what to do and in what order.
Advanced architectures allow the test analyst
some choice about what the sequence of events
should be. The level of choice is dependent
upon how sophisticated the architecture is.

Figure 2 illustrates data from an advanced
approach. Note that if there is a hash at the
beginning of the left hand column this means
that the line is a comment and not test data.
Lines beginning Supplier_Add or
Stock_Item_Add are the actual test data
which will be read by the automation code.
The format of the file is very different to that
in figure 1 because the meaning of the data in
each column is dependent upon what type of
line it is and this is defined in the first column.
The comment lines give the format so that the

test analyst knows what each column repre-
sents. For example in the seventh line, column
four is the ‘Name’ field because this is a
Stock_Item_Add format. Thus the test
analyst can choose the order of the actions
when creating the Excel data.

When the automation runs, a driver
program reads through the data and calls the
function specified in column 1 passing it the
data for that particular line. For example there
will be a function Stock_Item_Add which
will have been written by the test programmer
(scripter) in order to perform all of the actions

Ghost in the
Machine
John Kent, MD of Simply Testing Ltd, continues his series.

Part 4: Advanced test automation architectures

Figure 1: Simple ‘data-driven’ data

Figure 2: Advanced architecture data

Test Analysts - City
Salary range 24 to 28K plus bonus

Software Integrators is a small privately-owned software house that designs and develops integrated message
and payment solutions for banks and other financial institutions. Our clients are major banks in Europe, South
Africa and the United States.

We are looking for quality-focused and pro-active Test Analysts with a minimum of 2 years’ experience
to join our expanding test team in a hard-working but informal environment.

Please e-mail CV and covering letter to: marisa_brown@software-integrators.co.uk

For more information about our business, please see our website: www.software-integrators.co.uk

required to add a stock item. These functions
are what are known as wrappers.

Automation wrappers

Wrapper is an OO term that means some
software that is used to interface with an
object. In programming terms you call the
wrapper if you wish to use the object. You
can’t call the object directly.

In test automation, wrappers are programs
or functions written in the language of the test
tool which perform discreet automation tasks
as instructed by the test data and actions. They
provide the interface between the test and the
system under test’s user interface. In our previ-
ous example there are four wrappers –
Stock_Item_Add, Loc_Add, Supplier_Add
and Stock_Loc_Add. These are business level
wrappers – they ‘wrap’ business functions and
were written by the test programmer (scripter).
You will be able to see that the example in
figure 2 is similar to the data driven approach
but the first column in the test data of each line
tells the automation which wrapper to call.

There are two distinct types of advanced
architecture. Figure 2 shows a business object
level architecture. In this type of automation
architecture, one automation function or
program is written in the test tool for each
type of business task. These functions are the

wrappers for the busi-
ness tasks.

Usually a functional
decomposition of the
system is the first step
in building this type of
architecture. In a func-
tional decomposition,
the basic business
functions of the system are defined. Then the
wrappers for each business task are
programmed (scripted) and the data format for
each task is created.

Test data in business object level architec-
tures is at the business language level and
therefore understandable by end users, which
is a great advantage.

Screen/window level architectures

In this architecture there is one test
program that deals with each screen/window
in the system—it acts as a wrapper for that
screen/window. It handles all of the input and
output (getting expected results) for its
window or screen. See figure 3 for an example
of the data. Again lines with a hash in the left
hand side are comments used to show the test
analyst the format of the data for that
screen/window. The other lines are the test
data which is passed to the automation wrap-

pers for that particular screen. The first column
of the test data represents the screen that the
data refers to and thus the format of the line is
dependent upon what the screen name is in
column one. Also note that, as this a test of a
GUI system, for each user interface object
there is an action and a data field. Thus the test
analyst can specify actions like ‘Check’ that
the object contains the data equal to ‘Smith’ or
even ‘CheckEnabled’.

One of the biggest advantages of
screen/window level architectures is that all of
the user interface objects can be made available
to the test analyst in Excel and thus the analyst
has complete control over what the navigation
and actions should be, rather than being depend-
ent upon what the test automation programmer
(scripter) has put into the wrapper—as with
business object level architectures.

Next issue: New ways to create
automation code PT

Figure 3: Screen\window level advanced architecture data

SI
S O F T WA R E
INTEGRATORS

You will:

Produce and maintain Testware including Test
Plans, Scripts and Process Flowcharts

Perform internal system testing prior to UAT by
the client

Perform regression testing

Liaise with software developers to resolve issues

Configure and maintain multiple system testing
application environments

Provide client support throughout UAT

Contribute to an environment of continuous
improvement

You must have:

At least 2 years' experience in production and
execution of testware

Excellent written and oral communication skills

Strong investigative qualities

Previous experience using on-line payment or
messaging systems

Experience in a mainframe environment

Knowledge of SWIFT, CHAPS, BACS, FEDWIRE
CHIPS or CREST would be advantageous.

28 www.professionaltester.com • Professional Tester April 2004

If we have learned one thing in software
development, it is that we must get the speci-
fication right. More project and system
problems arise from the gaps, inaccuracies,
and ambiguities in specifications than from
any other cause. Yet, specification problems
recur in project after project. The fact is that
producing and maintaining good specifications
is not trivial. Acquiring the necessary informa-
tion is difficult, analysing it is a particularly
problematic task that is often omitted, verify-
ing the results is tedious, and expressing the
requirements in clear, grammatically-correct
language is impossible for many.

The test of a lesson being learned is
evidence of change in the thinking process as
well as in the way of doing, and the recurring
lesson should by now have influenced our
approach to everything. Yet, not only do defi-
cient specifications continue to plague
projects, but casual observation suggests that
software engineers have not transferred the
lesson into their own lives. They seem to take
no more care in specifying the requirements
for meetings with friends, journeys through
unfamiliar parts of the country, and picnics for
their children, than do other members of
society who have not had the benefit of their
salutary experiences.

Perhaps the preparation of specifications,
and planning in general, do not come naturally
to us. It seems that our heuristic approach is to
identify a goal and to take intuitively defined
steps towards it, rather than to plan the route in
detail. In life we are usually oblivious to the
inefficiency of this strategy because, in the
main, it seems to work, and when it doesn’t,
the consequences are mostly small and not far-
reaching. For example, having not clearly
specified their meeting place, two people wait
for each other in different parts of a train
station, but they laugh it off later; a traveller
doesn’t plan his journey and becomes lost, but
arrives only an hour late and is relieved at the
outcome; the ice and sandwiches are forgotten
but the picnic goes ahead anyway, and every-
one enjoys the cake and says that the drinks
were really cool enough.

In simple situations, intuition gets us by,
inefficiently but mostly without catastrophe.

But in development projects and other non-
trivial endeavours, intuition is not enough. In
well managed projects, the fact that specifica-
tion and planning do not come naturally is
compensated for by the provision of training,
structured methods of working, quality assur-
ance, and other means. Because planning
needs to be based on a specification, difficulty
in planning is often an indication of specifica-
tion deficiencies. Yet, the opportunity that this
presents for specification clarification or
improvement is frequently ignored, with
useless or misleading plans being produced
rather than specifications being revised.

The importance of specification is as great
in testing as at other stages of software devel-
opment projects. Without clarity of what is
required, test planners cannot carry out their
task with confidence; they cannot plan the most
effective testing. Yet in many (perhaps in most)
instances, vague specifications are accepted
without challenge. The culture of testers seems
to be to accept the inadequacies of others rather
than to challenge them, even though the quality
of their own work is compromised.

This point was made by the writer of a
letter published in a recent issue of
Professional Tester (issue 16, October 2003).
The writer claimed to be confused, having
read ‘some amazingly ridiculous things’, and
provided two examples of them. The first was
‘the requirement is for 80% statement cover-
age’, and the letter writer asked which 20% of
the statements do not need to be tested, and
whether this could be thrown away and a 20%
discount obtained on the cost of the applica-
tion. The second example was, ‘a package
could make do with a medium level software
quality’, in response to which the letter writer
asked how much is saved by accepting
medium rather than high quality, and what
additional saving would be made by settling
for low quality. Both the original expert’s
statement and the letter writer’s question
assume a correlation between quality and cost,
but it is worth noting that inferior program-
mers and slack management are almost certain
to produce very costly low-quality software!

The letter writer called on experts to desist
from making such statements and to provide a

sound basis for test planning. The trouble is,
though, that this is hard to come by, and the
silence of testers suggests that it isn’t thought
to be needed. There isn’t a universally agreed
basis for test planning, and it doesn’t seem to
be missed. Perhaps a part of the cause lies in
the fact that, although students are sometimes
(but not always) taught testing, they are almost
never taught how to plan it.

Returning to the quoted statements, are
they indeed amazingly ridiculous, or are they
founded on some element of good sense but
just inadequately expressed? If the latter, why
do the experts who write them use forms of
expression that first baffle and then amuse
readers, instead of creating statements that
ring true? They raise doubts about authorship
and editing in the field of testing, and about
expertise and professionalism too. They also
raise questions about test planners and testers
who, although admitting to not knowing how
to interpret the statements, seldom question
them. But is there some rationale behind such
statements? If the authors understood it, surely
they would express it and not leave the state-
ments apparently groundless.

Without justifying their conclusions,
experts define requirements for 80% statement
coverage rather than, say, 40% or 90%, and for
“medium-quality” rather than “high-” or “low-
quality” software. Perhaps they sense
something that they don’t understand. If
testing is time-consuming and costly, and
cannot be carried out to the same extent on all
software, then preference might usefully be
given to the software that matters most. Risk is
implicated. Indeed, it is often mentioned. But
how it forms the basis of test planning is not
made clear. Yet, if the risks arising from
system or software failures were understood –
identified, analysed and understood, and not
merely guessed at – it would be possible for
stakeholders to use them as a basis for decid-
ing what likelihood of failure they were
prepared to tolerate from a system, or from
particular subsystems. How such decisions
may be translated into test plans is the subject
of the remainder of this article.

Risk is a function of two variables: the
probability that a defined undesirable event

Using risk as the
basis of test planning
Consultant and trainer Felix Redmill says there is such a thing as tolerable level of failure

will occur, and the potential consequences if it
did. In the context of software that has not yet
been tested, it is possible to determine failure’s
consequences but not easy to estimate its prob-
ability. Thus, although we speak of ‘risk’, in
the present context, the single factor, conse-
quence, is proposed as the basis of test
planning. The consequences are likely to be
different for the various stakeholders. They
may involve financial loss, safety or security
breaches, loss of goodwill, or mere inconven-
ience, and each of these may be more or less
serious, depending on the circumstances. Their
identification, including its difficulties, has
been addressed in previous articles in this
column and will not be explained here. In
some cases, the consequences of failure may
be assessed for the system as a whole; in
others, it may be possible to determine them
for subsystems - but this needs to be done with
caution, for the effects of interactions between
software items can easily be overlooked. But
whatever the reference point, if the conse-
quences are categorised according to severity
in the context of the system’s use, the cate-
gories may be used to inform test planning.

Suppose we define four consequence cate-
gories, or classes, Class 1 being trivial, Class 4
being catastrophic, and Classes 2 and 3 forming
categories between the two. The software in
question would then be accorded the class of its
highest-class consequence. So we know one of
the components (consequence) of risk but not
the other (probability). We also know that we
can reduce risk by reducing either the conse-
quence or the probability of a given type of
failure. Assuming the potential consequences in
each case to be fixed, because they are linked to
the system’s objectives, risk reduction must be
achieved by reducing the probability of failure.
It is true that failure may be caused by operator
error, the probability of which should be
reduced by design, documentation, training,
supervision, and other means, but these issues
are beyond the scope of this article. What we
are concerned with here is reducing the proba-
bility of failure due to software faults - by
reducing the number of faults and by finding
and removing those that would result in the
greatest consequences. (Of course, it would be
preferable to produce better software in the first
place, but that is another matter. The subject
now is testing rather than development.)

The logic that we are following leads to the
proposition that testing would be most effec-
tive if Class 4 software were tested more
thoroughly than Class 3 software, Class 3
more thoroughly than Class 2, and so on. In
other words, testing should be risk-based. But
the process depends on the classes being pred-
icated on properly identified and analysed
risks and not supposition. Nor should it stop
there. It requires the methodical development
of test programmes, one for each software
class. Naturally, test cases must be designed
specifically for individual items of software,
but the general plan, based on the context of

system use, and also on the intention to put
most effort into trapping the faults with the
greatest potential consequences, should be
designed such that there is progression from
the basic test level to the most rigorous, ie:

Test programme 3 = Test programme 4 – something;

Test programme 2 = Test programme 3 – something;

Test programme 1 = Test programme 2 – something.

Test programme 4 needs to be designed for
providing confidence that the probability of
failure of Class 4 software is reduced to a
tolerable level. For example, in the context of
safety-critical systems, it may include substan-
tial static analysis as well as formal proof of
correctness with respect to a mathematically
based specification. Other test programmes are
then reductions on programme 4. Test
programme 1 may in some cases call for no
more than a level of black-box testing - and it
could include a requirement for ‘80% state-
ment coverage’. But here the basis for making
it is clearly stated, and the requirement is seen
to be not ridiculous but a purposeful attempt to
achieve cost-effective testing appropriate to
the circumstances.

But what is a tolerable level of failure, and
how can we know when we have achieved it?
By judgement (which is always subjective and
always needs to be justified) we can define a
failure rate that we would consider tolerable in
the circumstances. A continuous-operation
example is, ‘no more than one failure per ten
thousand hours of operation’, and an on-
demand example is, ‘no more than one failure
per thousand uses of the
application’. But we
cannot prove achieve-
ment in advance. We
can never be certain. We
must seek to increase
confidence, and we do
this by increasing the
rigour of testing in
proportion to the judged
acceptable failure rate
(based on the severity of
the consequences of
failure).

This approach relies
on the intuitively plau-
sible assumption that a
more rigorous test
process achieves better
results. However,
finding bugs depends
not only on the test plan
but also on the way in
which it is imple-
mented, and on whether
the faults found are
corrected and the soft-
ware re-tested.
Importantly, it depends
on the designers,
programmers, and their
managers. If sows’ ears

are produced in the first place, good testing
will not make silk purses of them.

If the version of risk-based testing described
here seems a good idea, then let us not ignore
the assumptions made in executing it.
Determining the various consequences of failure
can be difficult, and we can easily overlook or
underestimate some of them. Further, linking
consequences to individual subsystems through
a cause-and-effect chain, based on top-down
decomposition, may implicitly assume the inde-
pendence of subsystems from each other, but,
unless design has included partitioning, this is
unlikely to be valid. Then, the confidence that
we derive from our testing is strongly linked to
our starting assumptions. Although is not diffi-
cult to devise test plans and cases, we cannot be
sure that they will uncover the faults that need to
be found, and our final confidence that they
have done so is related to our initial assumption
that they will. Notwithstanding these and other
assumptions that we might make, the approach
is methodical; it is preferable to basing testing
only on intuition.

Returning to the statements that our letter
writer referred to as ridiculous, it is now
apparent that their use implies an intuitive
recognition that testing is most cost-effective
when based on risk. But intuitive recognition
does not amount to understanding. The state-
ments are not couched in terms of risk and
they do not escape ridicule. We need an under-
standing of the subject of risk so that
risk-based testing can be well done. PT

30 www.professionaltester.com • Professional Tester April 2004

My sixteen years of testing experience have
been mainly at the integration, system and
user acceptance levels, with the emphasis
firmly on functional testing. Indeed it is
significant that on many projects on which I
have worked the source documents on which
testing was based were called ‘Functional
Specifications’. On some projects I tested non-
functional attributes such as performance and
security, but when working with mainframe
and PC based applications any usability issues
were generally confined to matters such as
ensuring consistency in the user interface, and
the availability of appropriate help text and
error messages.

Testing web-based systems changed all
that, with known target user environments
being replaced by an open environment. One
consequence of this was a need to test how
accessible the functionality was under differ-
ent configurations of operating systems and
browsers. Another was the lack of a standard
for the user interface. As I began to test the
functionality of web applications I soon
became painfully aware of some usability
issues; these included inconsistent methods for
carrying out similar tasks, over-lengthy navi-
gation paths, unnecessarily complex screens
for carrying out apparently simple tasks, and
needless validations. For e-commerce applica-
tions the implications were serious.

I began to discuss these problems with
developers, to build usability into my test
plans, and to report usability issues as software
faults. This was still very limited in scope and
did not include any formal consideration of
broader accessibility issues, such as the
aspects of website use that have most impact
on those with physical impairments.

The realities of accessibility

My awareness of web accessibility was
brought into focus following an incident last
October which put my left leg in a thigh-length
plaster for several months. During that time I
was confined to a world that consisted of three
downstairs rooms at home, although the inter-
net meant that I could still communicate with
the outside world via email and the web.
However, space was limited by a make-shift
arrangement of furniture that was necessary,
and my PC had to be positioned such that its
TFT screen was a metre away and slightly

above eye level. Even after I had adjusted the
brightness setting to its maximum, the quality
of the display from this viewpoint was signifi-
cantly reduced compared to normal desktop
use. Effectively I was accessing the internet as
someone with visual impairment and so I had
to make adjustments in the way that I config-
ured and used the PC.

With a lengthy spell off work in prospect I
wanted to fill my time usefully, and an oppor-
tunity soon arose when a locally-based charity
asked for volunteers. My offer of help was
accepted, and I was asked to do a job which
involved making telephone calls to various
other charities, not-for-profit organisations and
related commercial companies. First I needed
to research these organisations to find out what
they did and to obtain a telephone number and
contact name – a task ideally suited to the web.

It was this work that quickly brought home
to me some realities of website accessibility,
and I began to look at the pages that I visited
wearing a usability testing hat. The same
applied to my regular internet usage – some of
my favourite sites were less easy to use in my
changed circumstances. What follows are
observations on some of my web accessibility
experiences during my incapacity. From them
I suggest some resources to use in addressing
these issues when testing web applications.

Size matters

One of the first things that I did to address
my problem of distance from the PC display
was to set the view text size to ‘Larger’ in my
browser (Internet Explorer 6). Immediately I
was struck by the different responses of
websites to this change, so to magnify the
effect further I then set the size to ‘Largest’. A
few sites coped well, with all or most of the
significant text being enlarged and more read-
able, as I expected. However, on several sites
the increase in the size of text had an adverse
effect on the rest of the page, typically causing
text to overlap graphics, text boxes, borders or
other text, with consequent difficulties in
reading. On a few sites the text size did not
change at all and so small text remained too
small to read.

That was only the beginning. Further inves-
tigation of my browser’s accessibility
capabilities revealed that it could be config-
ured to ignore the font sizes and styles

specified on web pages. This solved some
problems but often revealed additional incon-
sistencies and errors, thereby opening up a
further range of testing possibilities. The
lesson for me as a tester was clear – the use of
different text sizes was an accessibility issue
which previously I had not considered specifi-
cally in my website testing, but which I would
certainly include now.

The colour is magic

My view of the screen meant that my
ability to distinguish between colours was
reduced and, as I soon discovered, on many
websites the colour combinations used could
result in text magically disappearing into the
background. For example, a visit to a local
authority site revealed a combination of a dark
green background with dark text colours
which made navigation a nightmare, regard-
less of the size of the text. Here and on several
other sites the colour choice seemed to be
influenced by adherence to a ‘corporate’
colour scheme that was probably designed for
purposes other than web pages. Testers should
be prepared to point out this kind of conflict –
those responsible for company design criteria
may not be aware of implications like this and
should welcome feedback.

I found that the easiest pages to read were
those with black text on a white background –
straightforward and effective – but any dark
colour on a light background was also fine.
Light text on a dark background was usually
readable, but the choice of font then became
significant – thin spidery typefaces tend not to
work well in these circumstances. Some
people with visual impairment find white-on-
black the most readable and one charity site
offered this as an alternative to its standard
black-on-white.

My investigations of the browser’s accessi-
bility options revealed a configuration option
to ignore the colours specified on web pages.
However, as I found with text size, this was
sometimes only a partial solution that served
inadvertently as a ‘test technique’ to highlight
other issues.

A picture is worth a few words

Another potential block to my view of
website contents was the use of graphics and
video clips. Of course both can be effective

Through other’s eyes
Independent testing specialist Tim Edmonds closes our issue on user interface testing

with his take on the very first thing designers and testers should consider: accessibility

April 2004 Professional Tester • www.professionaltester.com 31

media on websites, but they can also intrude
and become counterproductive when used as
self-indulgent embellishments. For example,
several of the sites that I visited used an image
as a tiled background such that text positioned
over it was very difficult to read, particularly
when text and image colours were similar.

Animated graphics can also cause difficul-
ties. Sometimes they merely distract, but in
two cases there were hyperlinks behind
animated graphic controls, making it a chal-
lenge to read the text on them that described
their function. One site included this ‘feature’
on most of their pages so that navigation was
rather like playing an arcade game of ‘hit the
hyperlink’. Admittedly this was a youth
charity, whose typical users would be more
visually and digitally adept than me, but they
made it as difficult as possible for me to find
out how to contact them.

A picture may be worth a thousand words,
but sometimes you need a few words as well
as, or instead of, pictures. Images on web pages
can (and should) have some ‘alternative text’
associated with them, to be displayed if the
image is not present for any reason. I config-
ured my browser to disable graphics. This
showed where no alternative text had been
provided and, where the image was also a link,
it meant that there was no indication of where
the link went. Many visually impaired users
access the web using text-to-speech browsers,
which will render alternative text audibly, so
lack of text effectively hides the message in the
image, whether or not it has a hyperlink associ-
ated with it. An extreme example was a site
that on entry provided a page consisting only of
graphical images with no alternative text, so
with graphics disabled in the browser there was
no text at all displayed on the page! So here is
another testing suggestion – try running some
web test scripts with the browser graphics
disabled. Similarly, if a website makes exten-
sive use of video then try running some tests
with video disabled.

Some guidelines and resources

What I have described above are a few
examples of real web accessibility issues that
can be used to feed into formal or informal
usability testing. This is, of course, a selection
based on personal experience with impaired
vision and merely represents the tip of the
iceberg. For example, what about colour blind-
ness, sensitivity to flashing screens, and
deafness? Fortunately there are many
resources available that can be used to plan
and focus the test effort:

The World Wide Web Consortium (W3C)
under its Web Accessibility Initiative (WAI)
provides a set of Web Content Accessibility
Guidelines which can be used as input to web
page design and testing. The current draft of
this document is available at www.w3.org/wai.

There is a wealth of other useful material here,
including information about evaluating
websites for accessibility and alternative
browsers for special needs.

There are various statutory regulations that
have a bearing on accessibility. For example,
in the UK the 1995 Disability Discrimination
Act, Part III – Access to Goods and Services,
makes it unlawful for service providers to
discriminate against disabled people in certain
circumstances. For more information see
www.disability.gov.uk/dda/#part3.

In the USA Section 508 requires that
Federal agencies’ electronic and information
technology is accessible to people with
disabilities. There is a great deal of informa-
tion available at http://www.section508.gov.

Jakob Nielsen’s Alertbox columns, published
on his website at www.useit.com/alertbox, are a
rich source of information about usability issues
in general and include several covering accessi-
bility topics.

Tools and automation

Using different browser configurations for
text, colour and graphics is effectively adding
additional test environments. So, in the same
way that you might test technological accessi-
bility under different versions of operating
systems or browsers, you can run tests under
alternative browser settings. Fortunately
testing conformance to guidelines or regula-
tions is a task well suited to automation, and
there are resources available through the inter-
net to help with this. For example, the WAI
website has a section with links to many
different measurement tools, and the Section
508 website contains links to tools and
resources for implementing conformance.

Whether or not you have a mandatory
compliance requirement to measure and
improve accessibility, the Bobby website at
http://bobby.watchfire.com is a good starting
point. This measures against either the WAI
Web Content Accessibility Guidelines or
Section 508, and awards a ‘Bobby approved’
icon for websites that prove a given level of
conformance. If you are not sure about how
accessible your website is, then Bobby offers a
free service that provides accessibility feed-
back on a given URL (single page only) and
this is well worth trying.

Tools like Bobby are particularly suited to
situations such as that where a ‘corporate
style’ transferred to the web page gives acces-
sibility problems. In these cases a report from
a tool based on a recognised standard or set of
guidelines offers an objective way to inform
and convince management that it is worth
taking a different approach to the website.

Feedback and a word of caution

The work that prompted this article was
concerned mainly with charity sites and
‘caring’ organisations. Whereas I would just
abandon my use of a poorly accessible commer-
cial website, in these cases I took the trouble to
give some feedback. So, where there was an
easily reproducible error or usability problem
(and if I could locate the contact details) I sent
an email ‘incident report’ describing it. On
revisiting some of these sites when writing this
article I was pleased to see that several of them
have made changes and I can ‘close’ the inci-
dent reports! They include the local authority
site with the indistinguishable text and back-
ground colours, which now displays a very
readable dark green text on a light yellow back-
ground. Alas, the site that opens with the
text-free page when graphics are disabled
remains unchanged and just as unusable.

At the other end of the spectrum, there
were some sites that stood out because they
were clear and easy to use, so I took the time
to tell them so. For an example of what can be
done to make a website clear and accessible,
take a look at the Bobby-approved site
www.sense.org.uk.

However, a word of caution is necessary
here. A website that displays a Bobby
approved logo shows that it meets a certain
level of conformity to a set of guidelines, as
reported by a tool analysis of the underlying
HTML. However, it does not mean that there
are no accessibility problems. For example, on
another approved site I found the Bobby logo
and the accessibility features were on the
home page, but instead of being positioned at
the top left of the page they were at the bottom
right hand corner, reached only by scrolling
and easy to miss. One of the features offered
was a ‘text only’ option. Selecting it initiated a
conversion utility to render the page and this
took several minutes to complete – a process
that was repeated for each link selected.
Furthermore, the resultant pages were the
utility’s literal interpretation of the original
HTML, including any duplicate links and
unnecessary information.

So, by all means use conformance tools as
part of testing – they have a valuable role to
play – but develop some additional accessibil-
ity tests of your own. Users need testers on
their side and improving accessibility for users
with special needs will, after all, improve
usability for everyone.

Author’s note: I am grateful to all the
developers and test practitioners who have
taken the time to discuss usability and accessi-
bility issues with me, and particularly to Isabel
Evans who, amongst other things, introduced
me to Bobby. PT

EMBARCADERO IS

DATA PERFORMANCE AND AVAILABILITY.

we make data work™

You’ve just gone live with a new mission-critical application. Everything went well. The big system integrator left their
invoice. But suddenly it’s all come to a grinding halt. Money is evaporating while anxious colleagues and bosses wait for you
to troubleshoot the problem, then test the system you’ve brought back to life. This could have been avoided. With
Embarcadero’s Performance Centre and Extreme Test, you can proactively optimise the databases and verify application
availibility and performance, ensuring system uptime and reducing costs. To learn more, contact Chris Birks
on +44 (0)1628 684443, email chris.birks@embarcadero.co.uk, or visit www.embarcadero.com/performance.

©
2004 Em

barcadero Technologies Inc.All rights reserved.

