
E s s e n t i a l f o r s o f t w a r e t e s t e r s
TE TERSUBSCRIBE

It’s FREE
for testers

April 2012 v2.0 number 14£ 4 ¤ 5/

Including articles by:Including articles by:

Huw Price
Grid-Tools

Suri Chitti

Jim Holmes
Telerik

Paul Fratellone
MindTree

Huw Price
Grid-Tools

Suri Chitti

Jim Holmes
Telerik

Paul Fratellone
MindTree

meth
o

s

& frame
w

or
ks

The importance of functional test auto-
mation at the GUI level, and yet how
difficult it can be, is a topic that's been
close to everyone in testing for many
years and will remain so for some time
yet. Thinkers about testing have made
many wonderful contributions to a
growing body of literature that provides a
great deal of help. I'd like to make special
mention of Lisa Crispin (see
http://lisacrispin.com), Elisabeth
Hendrickson (http://testobsessed.com)
and the just-released book Experiences
of Test Automation by PT contributor
Dorothy Graham and Mark Fewster
(ISBN 9780321754066).

In this article I will discuss two current
and growing challenges being faced now
by testers: dealing with dynamic content,
and deciding what and what not to auto-
mate. I have chosen them as examples of
how test automators should focus on the
lifetime of their tests as much as their
initial value.

Deadly delay
Dynamic content is presentational layer
information that's added to a web docu-
ment at some time after it has completed
loading, that being triggered by some
event. Various methods exist of which
AJAX (“Asynchronous JavaScript and
XML”) is the most popular. A user action,
for example selecting a menu item, causes
a call to the server for more information
that adds or populates an element without
reloading the page. That call causes a
problem for automation because the client
has no way of knowing how long it will take
to complete, which varies with system and
network delays and latencies. An auto-
mated test that interacts with the ele-
ments, to verify their content or in order
to make inputs for another test purpose,
must handle the delay or will likely fail
to execute.

The most obvious way to prevent that is
to place a fixed delay into the test, aiming
to make it pause until the next object with
which it interacts is ready. However it's
hard to guess the period to use: too short
and the test, although it runs OK right now,
may fail later due to change of environ-
ment or environmental conditions, increa-
sing the need for intervention and hand-
holding. Too long, and execution is slowed
unnecessarily, usually significantly so as
the delay will probably have to be replica-
ted many times within this and other tests.
Worst, the effort and difficulty of maintain-
ing the tests when the SUT or test
requirements change is increased.

All things come to those who wait
A better approach is to use the wait facility
offered by virtually all test automation
frameworks and tools. Testers typically
come across dynamic content in two forms:
an element with which the test needs to
interact but that has not yet loaded can be
handled using implicit wait. Elements that

by Jim Holmes

The long game

Building long-term viability into
test automation

How Jim Holmes
avoids making a rod for
his own back

Methods and frameworks

15PT - April 2012 - professionaltester.com

have loaded but whose content has not
require explicit wait.

Figure 1 shows an example of the first of
these scenarios, a needed element not
yet present (this page and the one
discussed below are available online at
http://asp.net/ajaxLibrary/AjaxControlTool
kitSampleSite: this one is the DropDown
page). That element is a message (“You
selected…”) which appears only after the
user makes a selection from the dropdown
menu. Examining the Document Object
Model (DOM) of the page using Firebug
(http://getfirebug.com) reveals an empty
. Figure 2 shows the DOM after
the user makes a selection: the span is
populated with some text including a
element containing text showing the item
selected. An automated test script that
validates that text to show that the correct
item (the one selected) is displayed must
deal with the delay before it proceeds.

For example, WebDriver (http://seleniumhq
.org/projects/webdriver) provides implicit
wait using the Timeouts method on an
IWebDriver's Manager. Figure 3 shows
part of a script for the DropDown example
page written in C# using WebDriver's
FireFox driver. After clicking the dropdown,
the script polls the message element
(lblSelection) and does not continue until it
contains the text “Dry Fruit”. If that does
not happen within 10 seconds, a
TimeoutException is thrown.

Some tools handle implicit waits automa-
tically with no additional steps. Figure 4
shows the same test in Telerik Test Studio.

Explicit content
The second scenario is exemplified in
figure 5, the CascadingDropDown example
from the same site. Here the elements –
the dropdowns themselves, in this case
implemented with simple HTML <select>

Figure 1: ASP.net AJAX DropDown extender with empty

Figure 2: DropDown with populated

Figure 3: WebDriver script for implicit wait

Figure 4: Implicit wait in Telerik Test Studio

Methods and frameworks

PT - April 2012 - professionaltester.com 16

tags – load with the page but
only the top one is populated. When
a selection is made from it, the second
dropdown is populated with items
dependent on that selection. The third
dropdown is similarly dependent on
the selection from the second.

In this case the framework cannot easily
detect when content is loaded into the
element. An extra step is needed to define
explicitly a condition that must be satisfied

before proceeding. In WebDriver create
a “wait” class then invoke its Until method,
passing the condition for which to wait, defined
via a lambda expression (see figure 6). Most
tools require a similar two-step approach: wait
for the condition then make the interactions.
Figure 7 shows it done in Test Studio.

Approaching scripting with a mind to stable
actions around dynamic content can save
a lot of time and trouble later. The approach
applies also to testing many thick-client

desktop applications that use the same
model of retrieving dynamic content via
service calls.

To v or not to v
Automated (and for that matter manual)
tests that interact with GUIs will probably
always be somewhat brittle and hard to
maintain compared to lower-level tests.
Evolution of frameworks and tools has
made creating them easier: automatic
recording of user actions, in particular,
has made great strides forward. The
downside is that it can be used, easily,
to create too many low-value, high-
maintenance tests, so that testing spirals
out of control. It's important to have a
strategy for deciding what and what not
to automate.

High-value tests that are worth automating
usually include “the show me the money
path” – the transaction from which the
application owner receives revenue. High-
risk functionality, for example permissions
control and regulatory compliance, are also
strong candidates: where failure
could lead to liability or other severe
consequences, automation for regression
testing is a must, however difficult. Where
the system under test depends on third-
party components or services, tests
involving them should be automated:
not to test them, but to detect failure-
causing defects in the SUT caused by
updates or outages. In testing, if not in
finance, past performance is a guide to
future performance: regression defects
found previously tell you clearly what
tests to automate to detect them if
they happen again.

It's well understood that tests which will
be executed few times should not be
automated, although which ones those
are is not always easy to predict. But
experience teaches us which attributes

Figure 5: CascadingDropDown

Figure 6: Wait class

Figure 7: Explicit wait in Test Studio

Methods and frameworks

17PT - April 2012 - professionaltester.com

of the test item are best left to manual, and
especially visual, testing. Figure 8 shows a
grid for which I've designed automated tests
(see also http://demos.kendoui.com/
web/grid). The user accesses grouping and
sorting functionality by dragging and drop-
ping column headers. I've concentrated on
that functionality.

The grid is on a page with many alignments,
icons, styles and layout tweaks. I've speci-
fically avoided verifying those in my tests,
not because of the extra time it would take
me to implement, but because the tests
would then be brittle and take up too much
of my time when the page changes: I say
“when” because these things always change
all the time. Instead I use a simple script that

displays the page alongside an image of
how it was supposed to look last time I
checked and compare the two visually (and
carefully). If I see a difference I raise an

incident or, if I'm not sure, ask the web
designers whether it's deliberate. When
necessary, I replace my reference image
with one of the current correct page

Jim Holmes is an evangelist for Telerik Test Studio. A free trial is available at
http://telerik.com/automated-testing-tools

Figure 8: Kendo UI Grid widget

SUBSCRIBE
It’s FREE
for testers

professionaltester.com

Methods and frameworks

