PRO FESSIONAL

T EGT E

Essential for software testers

| April2012 [EZT€5 | va.0 ‘ number14

§
i
E

Includmg artlc

Huw Price
Grid-Tools

Suri Chitti.

Jim Holmes
Telerik

Paul Fratellone'_
MindTree

The long game

by Jim Holmes

Building long-term viability into

test automation

How Jim Holmes
avoids making a rod for
his own back

The importance of functional test auto-
mation at the GUI level, and yet how
difficult it can be, is a topic that's been
close to everyone in testing for many
years and will remain so for some time
yet. Thinkers about testing have made
many wonderful contributions to a
growing body of literature that provides a
great deal of help. I'd like to make special
mention of Lisa Crispin (see
http://lisacrispin.com), Elisabeth
Hendrickson (http://testobsessed.com)
and the just-released book Experiences
of Test Automation by PT contributor
Dorothy Graham and Mark Fewster
(ISBN 9780321754066).

In this article | will discuss two current
and growing challenges being faced now
by testers: dealing with dynamic content,
and deciding what and what not to auto-
mate. | have chosen them as examples of
how test automators should focus on the
lifetime of their tests as much as their
initial value.

Methods and frameworks

Deadly delay

Dynamic content is presentational layer
information that's added to a web docu-
ment at some time after it has completed
loading, that being triggered by some
event. Various methods exist of which
AJAX (“Asynchronous JavaScript and
XML?) is the most popular. A user action,
for example selecting a menu item, causes
a call to the server for more information
that adds or populates an element without
reloading the page. That call causes a
problem for automation because the client
has no way of knowing how long it will take
to complete, which varies with system and
network delays and latencies. An auto-
mated test that interacts with the ele-
ments, to verify their content or in order

to make inputs for another test purpose,
must handle the delay or will likely fail

to execute.

The most obvious way to prevent that is
to place a fixed delay into the test, aiming
to make it pause until the next object with
which it interacts is ready. However it's
hard to guess the period to use: too short
and the test, although it runs OK right now,
may fail later due to change of environ-
ment or environmental conditions, increa-
sing the need for intervention and hand-
holding. Too long, and execution is slowed
unnecessarily, usually significantly so as
the delay will probably have to be replica-
ted many times within this and other tests.
Worst, the effort and difficulty of maintain-
ing the tests when the SUT or test
requirements change is increased.

All things come to those who wait

A better approach is to use the wait facility
offered by virtually all test automation
frameworks and tools. Testers typically
come across dynamic content in two forms:
an element with which the test needs to
interact but that has not yet loaded can be
handled using implicit wait. Elements that

PT- April2012 - professionaltester.com 15

Methods and frameworks

ann DropDown Sample
o Oropown Samphe BN za
'C-; OF yeww 240, MY ajaxLibeary) AaeControlT ool amples te DropOown, OropDown. asax & (3 coogie a) (e (0] [&]-] [«
DropDown Demonstration

HOME Hernr cvar the tieet Balew and ek tn salact an aptisn:

Accordion

AbwaysVisisteCantrol St yonr et Gt e cromem flavos

Amimation

proiiemveg |

AutoComplete

BallconPopup
L *| Console [HTML= | €55 Script DOM Wet = L1 1]
& mm = el .t Update

< dnfmapeccy | BviA | Computed = | Lajout DOM
=k Tex
font-family

Takama Arial sans-senf

font-sice Lipx
L @) ron-wesght 00
sctien” style-"padsing: Spx;™s '"":::'m‘ el
- fam- none
A elor #56B666

Figure 1: ASP.net AJAX DropDown extender with empty

ann DropDewn Sample
o Drophiown Sample L+l
6}'\! w5 UMEL ajax Librasy A catredToolkitamples e iDropCown) DropOown. a5 pa e (- coogle
==
DropDown Demonstration
HOME Hover over the text below and dick to select an option:

Accoedion

AlwmyisisiaContral Sebect your fvonte exotic cr-oreas favr

Animation
AsprcFilelipload ‘fou selactd Dry Frugt
AutaCamplats
BalloonPopup
L i *| Comsole |WTML™ | €55 Scripe DOM e Vil

spansmi_sieevion o divees0_f Update < @ o dhdemearea

divemast_cehoiger < dvemy | St | Commputed > | Larout DOM
= | Tamt

Gl =g B fant-tamily Tahoma Arial, sans-ser
ot rub; Fomt-sice 1z
sel @) tort-weight 400
s Dy Fruit /e R i

g < fom-size-adiest none
il - | woler #668566

e s | aw-tranikarm e

Figure 2: DropDown with populated

[Test]

public void Implicit wait_example ()

{
IWebDriver browser = new FirefoxDriver();
browser.Navigate().GoToUrl (

"http://localhost/AJAXDemo/DropDown/DropDown.aspx") ;

browser.FindElement (By.Id("ctl00_SampleContent_TextLabel")).Click();
browser.Manage().Timeouts().ImplicitlyWait(TimeSpan.FromSeconds(10));
browser.FindElement (By.Id("ctl00_SampleContent_Optionl")).Click();

.Text
.Contains("Dry Fruit"));
browser.Quit();

}

Assert.IsTrue(browser.FindElement (By.Id("ctl1l00_SampleContent lblSelection"))

Figure 3: WebDriver script for implicit wait

Teberik Test Shudle - ALAX Demas

bt | Mecwd | Pedamaecn Teflsts Resshs Resons

5 xﬁf B A
i “:'WWMM |

o3 Tet i Ben s o
% Sonpt Sep 0 §j > 9
ol o s

Mo, Logicl Dislogt Retspters
v * =" Stoyboand SR

Secandany Target

B Exreution

Fause Hore
UseStepiintOnElementsTimout False

(i By e £ b
] SamgleCertentLabel 152
4) Orogiomssamsle

Figure 4: Implicit wait in Telerik Test Studio

16 PT - April 2012 - professionaltester.com

have loaded but whose content has not
require explicit wait.

Figure 1 shows an example of the first of
these scenarios, a needed element not
yet present (this page and the one
discussed below are available online at
http://asp.net/ajaxLibrary/AjaxControlTool
kitSampleSite: this one is the DropDown
page). That element is a message (“You
selected...”) which appears only after the
user makes a selection from the dropdown
menu. Examining the Document Object
Model (DOM) of the page using Firebug
(http://getfirebug.com) reveals an empty
. Figure 2 shows the DOM after
the user makes a selection: the span is
populated with some text including a
element containing text showing the item
selected. An automated test script that
validates that text to show that the correct
item (the one selected) is displayed must
deal with the delay before it proceeds.

For example, WebDriver (http://seleniumhq
.org/projects/webdriver) provides implicit
wait using the Timeouts method on an
IWebDriver's Manager. Figure 3 shows
part of a script for the DropDown example
page written in C# using WebDriver's
FireFox driver. After clicking the dropdown,
the script polls the message element
(IblSelection) and does not continue until it
contains the text “Dry Fruit”. If that does
not happen within 10 seconds, a
TimeoutException is thrown.

Some tools handle implicit waits automa-
tically with no additional steps. Figure 4
shows the same test in Telerik Test Studio.

Explicit content

The second scenario is exemplified in
figure 5, the CascadingDropDown example
from the same site. Here the elements —
the dropdowns themselves, in this case
implemented with simple HTML <select>

ann CaseadingOropDown Samale I
| ™ CascadingOropBows Sample | & | -
¢ ingDropDown D
HoM. Makie [Please selert a maie 2]
Accordion :
AlwaysVisibleControl oy
Animatian Color | Pesss select & colo
Asyrelllelphosd
AutoComplete Mo response: provided yot]
BalloonPogup e
Calendar 3
* | Conssls | HTML™ | O Seripe DOM bet B e80
3B . selectbeswslist] < w o« b oo tbedy o table o Svdemsaes o divimas t_ceholder < diviofoter & | MY | Computed ¥ | Lavout! OOM
ol i ¥ Ten
¥ ol femt=family Lutids Grande
— fom-siza Tt
O remweight 450
fast-styie s
foon-sias-adjest none
't ealar 000000 .
= = > o 3

Figure 5: CascadingDropDown

var listOfMakes = browser.FindElement(By.Id("ctl00_SampleContent DropDownListl"));

WebDriverWait wait = new WebDriverWait (browser, TimeSpan.FromSeconds(10));

wait.Until<IWebElement>((d) =>

{
return d.FindElement (By.XPath(

"id('ctl00_sSampleContent DropDownListl')/option[text()='Acura']"));

)i

var makeOptions = new SelectElement(listOfMakes);

makeOptions.SelectByText (make) ;

Figure 6: Wait class

i | mreed | pedemarce Temlss Rewhs Repots Help
i A C — CACTEEN o |
2 |a® E 2eeeE. 0 0 ¢ ¢ o @) "
oor | il : $ s P
T pute 0 Wi stoybord LocsiDatn G (400 <] Fum guot | DR dew gl Do mastrs g (RS
| e Propertes for sbep 2
o 4 (I
£ Bata brtven =
1 R Hmipate to © 2]
[4 it (Eindings) {Eollection)
|2 = & wat for TanerTeat ‘Comains’ Ploase select & makeAcuadud@HY on SampleConte v B rlements
| B F Selact Byalu optisn Surk’ s “SasiplaCasttDspDearlist Salect :mm.-q-e JCascadingDropDovntampled Sam
cordanyTwget
|+ @ # Wt for TanerText ‘Contains’ Fiease select s modelntegraiLTL on SempleContent .+ B Execution
|s 5 F Selent Spiau’ eption WU on ‘SamgleContentDrpDurmlatsea’ :“"""""’c“‘“ L
At) -
|« 7 B Wt for TanarTast Cantbing’ Planse tolact Pad o0 T Ty
l7 ® # Select Wyvalue cption Beght Red oa SempleContentOmaDownLstY5elect:
» |a =] B Wt for TanerTest' ‘Tontaias’ Vo have chasen a Bright Red Acura BL, o car¥ an ' = & Exiraction
| B Misc
LeaMasseattnladne ;i
‘ sropwrties thitssport dats binding ‘

Figure 7: Explicit wait in Test Studio

tags — load with the page but

only the top one is populated. When

a selection is made from it, the second
dropdown is populated with items
dependent on that selection. The third
dropdown is similarly dependent on
the selection from the second.

In this case the framework cannot easily
detect when content is loaded into the
element. An extra step is needed to define
explicitly a condition that must be satisfied

Dements

Ii_ﬂ ARG @ bl

+ SampleContentlirapOomnlistiSebect
SampleConteniDrapDasmmistiSelect
SampleContemrapDomnLic ekt I E'
* SempleContentiabeldSaan I

before proceeding. In WebDriver create

a “wait’ class then invoke its Until method,
passing the condition for which to wait, defined
via a lambda expression (see figure 6). Most
tools require a similar two-step approach: wait
for the condition then make the interactions.
Figure 7 shows it done in Test Studio.

Approaching scripting with a mind to stable
actions around dynamic content can save
a lot of time and trouble later. The approach
applies also to testing many thick-client

Methods and frameworks

desktop applications that use the same
model of retrieving dynamic content via
service calls.

Tovornottov

Automated (and for that matter manual)
tests that interact with GUIs will probably
always be somewhat brittle and hard to
maintain compared to lower-level tests.
Evolution of frameworks and tools has
made creating them easier: automatic
recording of user actions, in particular,
has made great strides forward. The
downside is that it can be used, easily,
to create too many low-value, high-
maintenance tests, so that testing spirals
out of control. It's important to have a
strategy for deciding what and what not
to automate.

High-value tests that are worth automating
usually include “the show me the money
path” — the transaction from which the
application owner receives revenue. High-
risk functionality, for example permissions
control and regulatory compliance, are also
strong candidates: where failure

could lead to liability or other severe
consequences, automation for regression
testing is a must, however difficult. Where
the system under test depends on third-
party components or services, tests
involving them should be automated:

not to test them, but to detect failure-
causing defects in the SUT caused by
updates or outages. In testing, if not in
finance, past performance is a guide to
future performance: regression defects
found previously tell you clearly what
tests to automate to detect them if

they happen again.

It's well understood that tests which will
be executed few times should not be
automated, although which ones those
are is not always easy to predict. But
experience teaches us which attributes

PT- April2012 - professionaltester.com 17

Methods and frameworks

of the test item are best left to manual, and
especially visual, testing. Figure 8 shows a
grid for which I've designed automated tests
(see also http://demos.kendoui.com/
web/grid). The user accesses grouping and
sorting functionality by dragging and drop-
ping column headers. I've concentrated on
that functionality.

The grid is on a page with many alignments,
icons, styles and layout tweaks. I've speci-
fically avoided verifying those in my tests,
not because of the extra time it would take
me to implement, but because the tests
would then be brittle and take up too much
of my time when the page changes: | say
“when” because these things always change
all the time. Instead | use a simple script that

L+l

Rasic wiage

5 Calondar

8 ComboBox

i
i
i

5 DatePicisr

SRNEREY

T

Y ——————————

Saws anager
ius D

Croe Toehcs Oficar
iow Prosicens. Saims
‘Crif Tochical Oficr
S Hapresariati
Crvel Tocrica Oficer
Sates Miarager

ot ases Covaeaty

]
B
E
L dTETE LGRS G

ﬂl

Figure 8: Kendo Ul Grid widget

displays the page alongside an image of
how it was supposed to look last time |
checked and compare the two visually (and
carefully). If | see a difference | raise an

incident or, if I'm not sure, ask the web
designers whether it's deliberate. When
necessary, | replace my reference image
with one of the current correct page B

Jim Holmes is an evangelist for Telerik Test Studio. A free trial is available at

http://telerik.com/automated-testing-tools

SUBSCRIBE

iIt’s FREE
for testers

professionaltester.com

